Privacy Preserving Fingerprint Identification

dc.contributor.advisorTalviste, Riivo, juhendaja
dc.contributor.advisorKrips, Kristjan, juhendaja
dc.contributor.authorEerikson, Hendrik
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-11-01T13:58:08Z
dc.date.available2023-11-01T13:58:08Z
dc.date.issued2020
dc.description.abstractPrivacy preserving technologies are used to create applications for computing on sensitive data without compromising on the secrecy of said data. In this thesis, secret sharing based multi-party computation is used to identify a fingerprint sample amongst a database of templates while preserving the secrecy of the sample and the templates. The FingerCode representation of fingerprints is used. Privacy preserving fingerprint identification mitigates some of the privacy and security risks in biometric identification systems. The secret sharing based fingerprint identification application developed in this thesis is more performant than a previous homomorphic encryption based one. Methodology for identifying fingerprints and programming privacy preserving applications using multi-party computation is given. Fingerprint-based identification systems are vital tools for border control and law enforcement. Privacy preserving fingerprint identification could be used to prevent leakage and abuse of fingerprint data.et
dc.identifier.urihttps://hdl.handle.net/10062/93916
dc.language.isoengeng
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFingerprint recognitionet
dc.subjectmulti-party computationet
dc.subjectbiometricset
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titlePrivacy Preserving Fingerprint Identificationet
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
eerikson_informaatika_2020.pdf
Suurus:
1.38 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: