Aberrant expression of genes associated with stemness and cancer in endometria and endometrioma in a subset of women with endometriosis


STUDY QUESTION Is there molecular evidence for a link between endometriosis and endometriosis-associated ovarian cancers (EAOC)? STUDY ANSWER We identified aberrant gene expression signatures associated with malignant transformation in a small subgroup of women with ovarian endometriosis. WHAT IS KNOWN ALREADY Epidemiological studies have shown an increased risk of EAOC in women with ovarian endometriosis. However, the cellular and molecular changes leading to EAOC are largely unexplored. STUDY DESIGN, SIZE, DURATION CD73+CD90+CD105+ multipotent stem cells/progenitors (SC cohort) were isolated from endometrium (n = 18) and endometrioma (n = 11) of endometriosis patients as well as from the endometrium of healthy women (n = 14). Extensive phenotypic and functional analyses were performed in vitro on expanded multipotent stem cells/progenitors to confirm their altered characteristics. Aberrant gene signatures were also validated in paired-endometrium and -endometrioma tissue samples from another cohort (Tissue cohort, n = 19) of endometriosis patients. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Paired-endometrial and -endometriotic biopsies were obtained from women with endometriosis (ASRM stage III–IV) undergoing laparoscopic surgery. Control endometria were obtained from healthy volunteers. Isolated CD73+CD90+CD105+ SC were evaluated for the presence of known endometrial surface markers, colony forming efficiency, multi-lineage differentiation, cell cycle distribution and 3D-spheroid formation capacity. Targeted RT-PCR arrays, along with hierarchical and multivariate clustering tools, were used to determine both intergroup and intragroup gene expression variability for stem cell and cancer-associated markers, in both SC+ and tissue cohorts. MAIN RESULTS AND THE ROLE OF CHANCE Isolated and expanded SC+ from both control and patient groups showed significantly higher surface expression of W5C5+, clonal expansion and 3D-spheroid formation capacity (P < 0.05) compared with SC−. The SC+ cells also undergo mesenchymal lineage differentiation, unlike SC−. Gene expression from paired-endometriosis samples showed significant downregulation of PTEN, ARID1A and TNFα (P < 0.05) in endometrioma compared with paired-endometrium SC+ samples. Hierarchical and multivariate clustering from both SC+ and tissue cohorts together identified 4 out of 30 endometrioma samples with aberrant expression of stem cell and cancer-associated genes, such as KIT, HIF2α and E-cadherin, altered expression ratio of ER-β/ER-α and downregulation of tumour suppressor genes (PTEN and ARID1A). Thus, we speculate that above changes may be potentially relevant to the development of EAOC. LARGE-SCALE DATA N/A. LIMITATIONS, REASON FOR CAUTION As the reported frequency of EAOC is very low, we did not have access to those samples in our study. Moreover, by adopting a targeted gene array approach, we might have missed several other potentially-relevant genes associated with EAOC pathogenesis. The above panel of markers should be further validated in archived tissue samples from women with endometriosis who later in life developed EAOC. WIDER IMPLICATIONS OF THE FINDINGS Knowledge gained from this study, with further confirmation on EAOC cases, may help in developing screening methods to identify women with increased risk of EAOC. STUDY FUNDING/COMPETING INTEREST(S) The study is funded by the Swedish Research Council (2012-2844), a joint grant from Stockholm County and Karolinska Institutet (ALF), RGD network at Karolinska Institutet, Karolinska Institutet for doctoral education (KID), Estonian Ministry of Education and Research (IUT34-16), Enterprise Estonia (EU48695), Horizon 2020 innovation program (WIDENLIFE, 692065), European Union’s FP7 Marie Curie Industry-Academia Partnerships and Pathways funding (IAPP, SARM, EU324509) and MSCA-RISE-2015 project MOMENDO (691058). All authors have no competing interest.



endometriosis, ovarian cancer, multipotent stem cells, gene expression regulation, cancer-associated gene, multicellular spheroids