Vehicle tracking and speed estimation in aerial footage

dc.contributor.advisorHadachi, Amnir, juhendaja
dc.contributor.authorJuurik, Jorgen
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-11-09T10:12:09Z
dc.date.available2023-11-09T10:12:09Z
dc.date.issued2020
dc.description.abstractThe field of object detection and object tracking has seen great improvements over the last few years with the innovation of modern machine learning algorithms and neural network models. Object tracking models can be utilized in many subjects, such as autonomous driving and surveillance. The goal of this thesis is to explore modern object detection and object tracking methods to construct a model which is able to track vehicles in top-down aerial footage. The YOLO method is used for creating the object detection model while a simple object tracking approach with Kalman Filtering is implemented.et
dc.identifier.urihttps://hdl.handle.net/10062/94130
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectNeural Networkset
dc.subjectObject detectionet
dc.subjectYOLOet
dc.subjectObject trackinget
dc.subjectKalman Filteringet
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleVehicle tracking and speed estimation in aerial footageet
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Juurik_CompSci_2020.pdf
Suurus:
1011.44 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: