Parkinsoni tõve tuvastamine eestikeelsete hääleklippide analüüsi abil kasutades masinõppe meetodeid

dc.contributor.advisorJärve, Joonas, juhendaja
dc.contributor.advisorTaba, Pille, juhendaja
dc.contributor.authorKrass, Aleksis
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2025-10-20T07:48:02Z
dc.date.available2025-10-20T07:48:02Z
dc.date.issued2025
dc.description.abstractThis Bachelor’s thesis investigates the applicability of machine learning methods for Parkinson’s Disease (PD) detection using Estonian voice clips. The research focuses on three main questions: firstly, evaluating the generalizability of an acoustic feature-based model trained on the Spanish PC-GITA dataset to Estonian data; secondly, examining whether combining Spanish and Estonian data during training improves model performance; and thirdly, testing the direct applicability of a state-of-the-art self-supervised learning (SSL) based WavLM Base model, fine-tuned elsewhere, on Estonian data. The results indicate that the direct cross-lingual transferability of acoustic feature-based models is limited, but combining datasets significantly improves performance up to 0.7893. The direct application of a pre-fine-tuned SSL model on short Estonian audio segments without further adaptation was not successful. The thesis highlights the need for language-specific adaptation and the use of multilingual datasets in voice-based PD detection.
dc.identifier.urihttps://hdl.handle.net/10062/116869
dc.language.isoet
dc.publisherTartu Ülikoolet
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectParkinsoni tõbi
dc.subjectmasinõpe
dc.subjectaudio
dc.subjecthääleanalüüs
dc.subjectsüvaõpe
dc.subjectsiirdeõpe
dc.subjectakustilised tunnused
dc.subjecteesti keel
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticsen
dc.subject.otherinfotechnologyen
dc.titleParkinsoni tõve tuvastamine eestikeelsete hääleklippide analüüsi abil kasutades masinõppe meetodeid
dc.typeThesis

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
krass_informaatika_2025.pdf
Suurus:
399.7 KB
Formaat:
Adobe Portable Document Format