Evaluating Transformer Architecture for the Game of Chess

dc.contributor.advisorBarbu, Eduard, juhendaja
dc.contributor.authorMarrandi, Raiko
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-10-30T07:17:53Z
dc.date.available2023-10-30T07:17:53Z
dc.date.issued2023
dc.description.abstractTransformers are state-of-the-art natural language processing models, which have shown success in a variety of areas not directly related to natural language. This work evaluates the learning capabilities of transformers in the game of chess. The models are trained using an unannotated dataset of played chess games in Forsyth-Edwards notation (FEN) and their performances are compared with models trained on less comprehensive datasets used in prior research. The findings show that the models are not capable of generalizing on the richer FEN dataset and demonstrate inferior performance compared to the control models across all evaluation metrics.et
dc.identifier.urihttps://hdl.handle.net/10062/93817
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMachine learninget
dc.subjecttransformerset
dc.subjectchesset
dc.subjectself-attentionet
dc.subjectunsupervised learninget
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleEvaluating Transformer Architecture for the Game of Chesset
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Marrandi_BSc_informaatika_2023.pdf
Suurus:
993.94 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: