Symbiont plasticity as a driver of plant success

dc.contributor.authorZobel, Martin
dc.contributor.authorKoorem, Kadri
dc.contributor.authorMoora, Mari
dc.contributor.authorSemchenko, Marina
dc.contributor.authorDavison, John
dc.date.accessioned2024-10-08T10:03:55Z
dc.date.available2024-10-08T10:03:55Z
dc.date.issued2024
dc.description.abstractWe discuss which plant species are likely to become winners, that is achieve the highest global abundance, in changing landscapes, and whether plant-associated microbes play a determining role. Reduction and fragmentation of natural habitats in historic landscapes have led to the emergence of patchy, hybrid landscapes, and novel landscapes where anthropogenic ecosystems prevail. In patchy landscapes, species with broad niches are favoured. Plasticity in the degree of association with symbiotic microbes may contribute to broader plant niches and optimization of symbiosis costs and benefits, by downregulating symbiosis when it is unnecessary and upregulating it when it is beneficial. Plasticity can also be expressed as the switch from one type of mutualism to another, for example from nutritive to defensive mutualism with increasing soil fertility and the associated increase in parasite load. Upon dispersal, wide mutualistic partner receptivity is another facet of symbiont plasticity that becomes beneficial, because plants are not limited by the availability of specialist partners when arriving at new locations. Thus, under conditions of global change, symbiont plasticity allows plants to optimize the activity of mutualistic relationships, potentially allowing them to become winners by maximizing geographic occupancy and local abundance.
dc.identifier.urihttps://doi.org/10.1111/nph.19566
dc.identifier.urihttps://hdl.handle.net/10062/105255
dc.language.isoen
dc.relationinfo:eu-repo/grantAgreement/EC/HE/101044424///PlantSoilAdapt
dc.relation.ispartofNew Phytologist (2024) 241: 2340–2352
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectflexible mutualism
dc.subjectgeographicoccupancy
dc.subjectlandscape structure
dc.subjectmycorrhiza
dc.subjectnitrogen fixers
dc.subjectpathogens
dc.subjectplant–soilinteractions
dc.subjectspecies abundance
dc.titleSymbiont plasticity as a driver of plant success
dc.typeinfo:eu-repo/semantics/article

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Symbiont_plasticity_as_a_driver_of_plant_success.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format