Improving translation for low-resource Finno-Ugric languages with Neural Machine Translation models

dc.contributor.advisorTättar, Andre, juhendaja
dc.contributor.authorTars, Maali
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-09-05T12:29:41Z
dc.date.available2023-09-05T12:29:41Z
dc.date.issued2021
dc.description.abstractTraining a good neural machine translation model requires a lot of data. The majority of languages in the world have low amounts of suitable data available for this task. One possible solution to this problem is developing a multilingual model, combining high-resource and low-resource languages and creating a shared vocabulary space, where knowledge gained from high-resource languages is applied to translating low-resource languages. Another useful technique is to produce new data for low-resource languages by creating synthetic translations of monolingual data with a baseline model. In this thesis we use both of those methods, training a multilingual baseline model on Finno- Ugric language family data and increasing the amount of data for smaller Finno-Ugric languages by translating monolingual data with the multilingual baseline model in order to improve machine translation quality for low-resource languages.et
dc.identifier.urihttps://hdl.handle.net/10062/91989
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectneural networkset
dc.subjectautomatic learninget
dc.subjectmachine translationet
dc.subjectlanguage technologyet
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleImproving translation for low-resource Finno-Ugric languages with Neural Machine Translation modelset
dc.typeThesiset

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tars_informaatika_2021.pdf
Size:
179.18 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: