Super Resolution and Face Recognition Based People Activity Monitoring Enhancement Using Surveillance Camera
Date
2016
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Tartu Ülikool
Abstract
Due to importance of security in the society, monitoring activities and recognizing specific
people through surveillance video camera is playing an important role. One of
the main issues in such activity rises from the fact that cameras do not meet the resolution
requirement for many face recognition algorithms. In order to solve this issue,
in this work we are proposing a new system which super resolve the image. First,
we are using sparse representation with the specific dictionary involving many natural
and facial images to super resolve images. As a second method, we are using deep
learning convulutional network. Image super resolution is followed by Hidden Markov
Model and Singular Value Decomposition based face recognition. The proposed system
has been tested on many well-known face databases such as FERET, HeadPose, and
Essex University databases as well as our recently introduced iCV Face Recognition
database (iCV-F). The experimental results shows that the recognition rate is increasing
considerably after applying the super resolution by using facial and natural image
dictionary. In addition, we are also proposing a system for analysing people movement
on surveillance video. People including faces are detected by using Histogram of Oriented
Gradient features and Viola-jones algorithm. Multi-target tracking system with
discrete-continuouos energy minimization tracking system is then used to track people.
The tracking data is then in turn used to get information about visited and passed
locations and face recognition results for tracked people.
Description
Keywords
Super Resolution, Deep Learning, Surveillance Videos, Face Recognition, Hidden Markov Model, Singular Value Decomposition, Human Tracking, Histogram of Oriented Gradients.