Development of EEG-Based BCI Application Using Machine Learning to Classify Motor Movement and Imagery

dc.contributor.advisorMuhammad, Yar, juhendaja
dc.contributor.advisorMuhammad, Naveed, juhendaja
dc.contributor.authorRoots, Karel
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-10-27T12:47:49Z
dc.date.available2023-10-27T12:47:49Z
dc.date.issued2020
dc.description.abstractA brain-computer interface (BCI) is a system that implements human-computer communication by interpreting brain signals. The signals can be recorded through different neuroimaging techniques that can read brain activity, such as electroencephalography (EEG). The goal of BCI technology is to enable the user to communicate with or control an external device using their mind. BCIs are widely used in medicine to help patients with limited motor abilities to communicate with their environment. However, there are many challenges faced when building a BCI capable of classifying the subject’s intention, such as the highly individualized nature of brain waves, which makes the development of a universal classifier difficult. This work aimed to develop a better electroencephalography (EEG) based machine learning classifier model capable of cross-subject motor movement and imagery classification and to build a BCI system to validate the performance of the developed classifier. The classifier was based on convolutional neural networks (CNN) with a multi-branch feature fusion approach. The classifier was developed using Tensorflow machine learning framework, the BCI system was developed in the Python programming language using the PyQT framework, and the Emotiv EPOC EEG device was used for signal collection. The resulting classifier was tested on a publicly available dataset of 103 subjects. The classifier achieved an accuracy of 84.1% when predicting executed left- or right-hand movement and an accuracy of 83.8% when predicting imagined left- or right-hand movement.et
dc.identifier.urihttps://hdl.handle.net/10062/93806
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBrain-computer interface (BCI)et
dc.subjectconvolutional neural network (CNN)et
dc.subjectdeep learninget
dc.subjectelectroencephalography (EEG)et
dc.subjecttransfer learninget
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleDevelopment of EEG-Based BCI Application Using Machine Learning to Classify Motor Movement and Imageryet
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Roots_Informaatika_2020.pdf
Suurus:
747.22 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: