NLI Data Sanity Check: Assessing the Effect of Data Corruption on Model Performance

dc.contributor.authorTalman, Aarne
dc.contributor.authorApidianaki, Marianna
dc.contributor.authorChatzikyriakidis, Stergios
dc.contributor.authorTiedemann, Jörg
dc.contributor.editorDobnik, Simon
dc.contributor.editorØvrelid, Lilja
dc.date.accessioned2023-09-22T13:43:27Z
dc.date.available2023-09-22T13:43:27Z
dc.date.issued2021
dc.identifier.issnISSN 1736-6305 (Online)
dc.identifier.urihttps://hdl.handle.net/10062/93069
dc.language.isoeng
dc.publisherReykjavik, Iceland (Online), Linköping University Electronic Press, Sweden, pp. 276--287
dc.relation.ispartofProceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)
dc.rightsopenAccessen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleNLI Data Sanity Check: Assessing the Effect of Data Corruption on Model Performanceen
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2021_nodalida_main_28.pdf
Size:
209.13 KB
Format:
Adobe Portable Document Format