Mother-bud detection and classification in yeast cells

dc.contributor.advisorAli, Mohammed A. S., juhendaja
dc.contributor.advisorNúñez, Karla Juárez, juhendaja
dc.contributor.authorVärv, Danver Hans
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-08-22T12:25:44Z
dc.date.available2023-08-22T12:25:44Z
dc.date.issued2022
dc.description.abstractIn different organisms, asymmetric cell division is a conserved process in which asymmetric inheritance of cellular components gives rise to two cells with different characteristics. In budding yeast, Saccharomyces cerevisiae, after the asymmetric cell division two cells are generated: mother and daughter. Fluorescence microscopy has been widely used to study such microorganisms and hence study the process of cell division. Advances in microscopy have increased output data volumes, making the manual processing of such images expensive. Therefore, developing a pipeline to analyze microscopy images coming from screening experiments would have a high practical impact. In this work, we built a deep-learning-based pipeline for detecting budding (dividing) yeast cells and distinguishing bud from mother cells during yeast division. The final goal is to study if older proteins are being retained on the mother side and whether newly synthesized proteins are inherited towards the bud. The results show that the pipeline was able to detect the cells that are about to divide with an accuracy of 70.42%. Furthermore, 87.72% of the mothers and buds were accurately classified.et
dc.identifier.urihttps://hdl.handle.net/10062/91675
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectdeep learninget
dc.subjectneural networkset
dc.subjectfluorescence microscopyet
dc.subjectyeast cells segmentationet
dc.subjectmother-bud detectionet
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleMother-bud detection and classification in yeast cellset
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Varv_BSc_Thesis_2022.pdf
Suurus:
5.42 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: