Navigating Swedish Salafism Large language model-augmented content detection and topic modeling using BERTopic with YouTube metadata

dc.contributor.authorSvensson, Jonas
dc.contributor.editorBouma, Gerlof
dc.contributor.editorDannélls, Dana
dc.contributor.editorKokkinakis, Dimitrios
dc.contributor.editorVolodina, Elena
dc.date.accessioned2025-11-10T11:17:41Z
dc.date.available2025-11-10T11:17:41Z
dc.date.issued2025-11
dc.description.abstractThe chapter suggests and provides an example of a Large Language Model (LLM)-augmented method for gaining a quick overview of large sets of YouTube videos using metadata collected through the YouTube API. The case chosen is the Swedish Salafist YouTube channel islam.nu that houses 1 680 videos. An LLM (GPT-4o mini) is given a prompt to guess the content of videos based on information given in their titles and descriptions. These guesses are then used in an LLM-augmented topic modeling process utilizing the Python library BERTopic and the HUMINFRA resource, the Swedish Royal Library’s sentencetransformers model “sentence-bert-swedish-cased”. The videos thus placed under topics are then again subjected to processing by an LLM, to produce easyto-read representations of the topics. This method provides a convenient way to quickly understand the content of YouTube video sets and can serve as a first step in a purposive sampling procedure.
dc.identifier.isbn9789908536125
dc.identifier.urihttps://hdl.handle.net/10062/117346
dc.identifier.urihttps://doi.org/10.58009/aere-perennius0176
dc.language.isoen
dc.publisherUniversity of Tartu Library
dc.relation.ispartofHuminfra handbook: Empowering digital and experimental humanities
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleNavigating Swedish Salafism Large language model-augmented content detection and topic modeling using BERTopic with YouTube metadata
dc.typeArticle

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Huminfra_Handbook_Chapter7.pdf
Suurus:
349.94 KB
Formaat:
Adobe Portable Document Format