Leveraging neural models for data processing and analysis automation

dc.contributor.authorKõiv, Erik
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Tehnoloogiainstituutet
dc.date.accessioned2023-10-09T14:05:41Z
dc.date.available2023-10-09T14:05:41Z
dc.date.issued2023
dc.description.abstractUnmanned Ground Vehicles (UGVs) are a staple in some industries and are entering the market in others. Development of these UGVs and their automation is resource intensive and timeconsuming work. Specifically the job of processing and analysing data collected by the various sensors and cameras has so far been done by human workers. In recent years however, it has become possible to propose the automation of these tasks. This thesis describes the development of a pipeline application aimed at reducing the workload of the workers doing these jobs by leveraging neural models such as CLIPSeg, capable of zero-shot text-prompt image segmentation, to extract data from video frames based on specified classes of interest. A proof of concept demo was developed and presented to potential users, leading to the extraction of requirements for a minimum viable product (MVP). The MVP requirements included avoiding image resizing distortion, a command-line interface, and additional post-inference data analysis. The CLIPSeg model was evaluated alongside CLIPSurgery, another zero-shot image segmentation model, using a testing dataset. CLIPSeg demonstrated higher viability for the selected classes and was further evaluated using an 80% model score and 0.05% image area threshold to eliminate false positive results with great success. The final MVP application fulfilled all presented requirements and proved the viability of the CLIPSeg model for the use-caseet
dc.identifier.urihttps://hdl.handle.net/10062/93445
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectmachine learning, machine vision, neural model, automated guided vehicle, unmanned ground vehicle, image segmentationet
dc.subject.othermagistritöödet
dc.titleLeveraging neural models for data processing and analysis automationet
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Koiv_MSc2023.pdf
Suurus:
2.13 MB
Formaat:
Adobe Portable Document Format

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: