Promootorite kasutust mõjutavate geneetiliste variantide leidmine CAGE tehnoloogia abil

dc.contributor.advisorAlasoo. Kaur, juhendaja
dc.contributor.authorVija, Andreas
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-10-30T13:04:21Z
dc.date.available2023-10-30T13:04:21Z
dc.date.issued2020
dc.description.abstractGene expression is heavily influenced by promoters, which are special DNA regions near the starts of genes. Differential promoter usage has been associated with multiple complex diseases. Among other things, promoters dictate the transcripts that are created based on DNA. Although RNA sequencing (RNA-seq) is commonly used to measure transcription, its signal is relatively weak at the start of transcripts. Cap analysis of gene expression (CAGE) is a method that focuses on the beginnings of transcripts and can thus better measure promoter usage. The goal of this work was to investigate whether CAGE technology is superior to RNA-seq in detecting genetic variants that influence promoter usage. It was found that CAGE is likely somewhat better for this task. Additional RNA–seq transcript annotations were also created based on promoter annotations made using CAGE. These new annotations improved the ability of RNA-seq to detect genetic effects on promoter usage, but the annotations need to be still revised to reduce the number of false positives.et
dc.identifier.urihttps://hdl.handle.net/10062/93849
dc.language.isoestet
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPromoterset
dc.subjecttranscriptomicset
dc.subjectCAGEet
dc.subjecteQTL analysiset
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titlePromootorite kasutust mõjutavate geneetiliste variantide leidmine CAGE tehnoloogia abilet
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Vija_Informaatika_2020.pdf
Suurus:
918.55 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: