Gesture Detection Software for Human-Robot Collaboration
Date
2020
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
With robots becoming more complex machines with more actions available at their disposal,
it becomes harder for humans to control them without prior training. I propose a gesture
detection system which uses OpenPose and ROS (Robot Operating System) to control mobile
robotic platforms. Output from OpenPose is normalized into a joint angle form, which is also
used to describe gestures in the system. Proposed normalization method in combination with
the capability to change described gestures in a separate YAML configuration file makes the
whole system scalable for a developer who can add, remove or modify gestures described by
angle notation. The developed system is able to detect static gestures and was tested on three
sets, each consisting of 5 gestures to control a Clearpath Jackal mobile robot.
In estonian: Robotid on muutumas tehniliselt aina keerukamaks ning nende abil on võimalik täita üha
enam ülesandeid. Ka robotite juhtimine on inimestele muutumas väga keeruliseks.
Käesolevas lõputöös luuakse kehakeele-põhine süsteem, mis kasutab tarkvarateeke OpenPose
ja ROS, et juhtida mobiilset robotplatvormi. OpenPose’i väljund normeeritakse nurkade
esitlusele, milles on kirjeldatud ka kasutatavad žestid. Loodud süsteem on skaleeritav, sest
normeeritud kujul žeste saab robotsüsteemi arendaja vastavalt vajadusele lisada, muuta ja
eemaldada YAML-tüüpi konfiguratsioonifailis. Valminud lahenduse demostreerimiseks
implementeeriti kolm erinevat 5-žestilist komplekti, mille abil juhiti Clearpath Jackal
mobiilset robotit.
Description
Keywords
gesture detection, human-robot collaboration, OpenPose, ROS, žestituvastus, inimese ja roboti koostöö