Human Activity Recognition Based Path Planning For Autonomous Vehicles

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Tartu Ülikool

Abstract

Human activity recognition (HAR) is wide research topic in a field of computer science. Improving HAR can lead to massive breakthrough in humanoid robotics, robots used in medicine and in the field of autonomous vehicles. The system that is able to recognise human and its activity without any errors and anomalies, would lead to safer and more empathetic autonomous systems. During this thesis multiple neural networks models, with different complexity, are being investigated. Each model is re-trained on the proposed unique data set, gathered on automated guided vehicle (AGV) with the latest and the modest sensors used commonly on autonomous vehicles. The best model is picked out based on the final accuracy for action recognition. Best models pipeline is fused with YOLOv3, to enhance the human detection. In addition to pipeline improvement, multiple action direction estimation methods are proposed. The action estimation of the human is very important aspect for self-driving car collision free path planning.

Description

Keywords

tehisnärvivõrk, isesõitev auto, objekti tuvastus, inimese tuvastus, inimese tegevuse tuvastus, trajektoori planeerimine, Neural Networks, self-driving car, object detection, human detection, human action detection, path planning

Citation