Mind the Gap: Diverse NMT Models for Resource-Constrained Environments

dc.contributor.authorGibert, Ona de
dc.contributor.authorO'Brien, Dayyán
dc.contributor.authorVariš, Dušan
dc.contributor.authorTiedemann, Jörg
dc.contributor.editorJohansson, Richard
dc.contributor.editorStymne, Sara
dc.coverage.spatialTallinn, Estonia
dc.date.accessioned2025-02-17T14:32:59Z
dc.date.available2025-02-17T14:32:59Z
dc.date.issued2025-03
dc.description.abstractWe present fast Neural Machine Translation models for 17 diverse languages, developed using Sequence-level Knowledge Distillation. Our selected languages span multiple language families and scripts, including low-resource languages. The distilled models achieve comparable performance while being 10x times faster than transformer-base and 35x times faster than transformer-big architectures. Our experiments reveal that teacher model quality and capacity strongly influence the distillation success, as well as the language script. We also explore the effectiveness of multilingual students. We release publicly our code and models in our Github repository: anonymised.
dc.identifier.urihttps://hdl.handle.net/10062/107212
dc.language.isoen
dc.publisherUniversity of Tartu Library
dc.relation.ispartofseriesNEALT Proceedings Series, No. 57
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleMind the Gap: Diverse NMT Models for Resource-Constrained Environments
dc.typeArticle

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
2025_nodalida_1_21.pdf
Suurus:
252.25 KB
Formaat:
Adobe Portable Document Format