NER som ett källidentifieringsverktyg. Erfarenheter av svenska BERT för digital historia 1.25

dc.contributor.authorNorrby, Jens
dc.contributor.editorNermo, Magnus
dc.contributor.editorPapadopoulou Skarp, Frantzeska
dc.contributor.editorTienken, Susanne
dc.contributor.editorWidholm, Andreas
dc.contributor.editorBlåder, Anna
dc.date.accessioned2025-12-19T12:45:42Z
dc.date.available2025-12-19T12:45:42Z
dc.date.issued2025
dc.description.abstractThe paper explores my experiences of working with Named Entity Recognition (NER) in Swedish parliamentary records. As such, it provides a practical account of my methodology in employing the Swedish BERT and its NER functionality in a historical dataset. It also reflects on the relevance of this case to the broader relationship between digital and traditional intellectual history. The study described used NER to identify the geographical areas and placenames within Swedish parliamentary discourse from 1887 to 1914. Taken together, this list of locations could be used to determine the aggregate frequencies of geographical groupings, in this case predominantly nations. The quantitative findings were subsequently used to navigate the data set and identify the most relevant texts for qualitative, contextual close readings. This paper argues that there are strengths in employing digital tools but maintaining the framework of traditional intellectual history in accordance with ‘digital history 1.25’en
dc.identifier.issn1736-6305
dc.identifier.urihttps://hdl.handle.net/10062/118300
dc.language.isosv
dc.publisherTartu University Library
dc.relation.ispartofseriesNEALT Proceedings Series 60
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectNamed Entity Recognition
dc.subjectParliaments
dc.subjectMental Maps
dc.subjectBERT
dc.subjectDigital History
dc.titleNER som ett källidentifieringsverktyg. Erfarenheter av svenska BERT för digital historia 1.25
dc.typeArticle

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
paper_10.pdf
Suurus:
1 MB
Formaat:
Adobe Portable Document Format