Evaluating Slow Feature Analysis on Time-Series Data

dc.contributor.advisorKull, Meelis, juhendaja
dc.contributor.authorKaasla, Kaarel
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-09-13T12:59:47Z
dc.date.available2023-09-13T12:59:47Z
dc.date.issued2021
dc.description.abstractIn this thesis, we investigate Slow Feature Analysis (SFA) as a method of extracting slowly-varying signals from quickly-varying input data. The main aim of the thesis is two-fold. The first primary objective is to evaluate how the level of noise in input data affects the performance of SFA for different input feature combinations. The second objective of this thesis is to compare the performance of the classical formulation of SFA to a biologically plausible version of the algorithm. The first half of the thesis gives reader a theoretical overview of how the algorithm works and explores some of the previous applications. The second half conducts three experiments that explore the primary research questions of the thesis and discusses possible further research directions.et
dc.identifier.urihttps://hdl.handle.net/10062/92160
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMachine learninget
dc.subjectunsupervised learninget
dc.subjectSlow Feature Analysiset
dc.subjectneural networkset
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleEvaluating Slow Feature Analysis on Time-Series Dataet
dc.typeThesiset

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
kaasla_informaatika_2021.pdf
Size:
956.52 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: