Morfoloogilise muuttüübi automaatne tuvastamine

dc.contributor.advisorOrasmaa, Siim, juhendaja
dc.contributor.authorSaska, Sander
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2024-09-30T07:13:34Z
dc.date.available2024-09-30T07:13:34Z
dc.date.issued2024
dc.description.abstractEstonian language is constantly evolving, as new words are created in different ways. Language users often know intuitively how to inflect new words, but in linguistics this intuition is formalized in the form of inflection types. This work researches how to automate the identification of inflection types. To this end, two LSTM-based models have been created to detect and predict inflection types. The initial data for the models are taken from Vabamorf’s morphology lexicon, which consists of almost 74 000 lemmas. All possible word forms are synthesized for the lemmas and the result is transformed into a suitable form for the LSTM-based models. One model is trained on only words, with an accuracy of 95.8%, and the other model is trained on words and parts of speech, with an accuracy of 97.8%.
dc.identifier.urihttps://hdl.handle.net/10062/104954
dc.language.isoet
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Estoniaen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subjectLSTM
dc.subjectmuuttüübid
dc.subjectVabamorf
dc.subjecttehisnärvivõrgud
dc.subjecttehisintellekt
dc.subjectmasinõpe
dc.subjectklassifitseerimine
dc.subjectinflection types
dc.subjectVabamorf
dc.subjectartifical neural networks
dc.subjectartificial intelligence
dc.subjectmachine learning
dc.subjectclassification
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticsen
dc.subject.otherinfotechnologyen
dc.titleMorfoloogilise muuttüübi automaatne tuvastamine
dc.typeThesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
saska_informaatika_2024.pdf
Size:
711.59 KB
Format:
Adobe Portable Document Format