MSI magistritööd – Master's theses
Selle kollektsiooni püsiv URIhttps://hdl.handle.net/10062/30418
Sirvi
Sirvi MSI magistritööd – Master's theses Autor "Gimbutas, Mark" järgi
Nüüd näidatakse 1 - 1 1
- Tulemused lehekülje kohta
- Sorteerimisvalikud
Kirje Varjatud Markovi välja mudelid puudel(Tartu Ülikool, 2015) Gimbutas, Mark; Lember, Jüri, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatilise statistika instituutVarjatud Markovi välja mudel on statistiline mudel, millel on kaks komponenti:vaatlused ja vaatluseid genereeriv juhuslik protsess, mis on tegeliku huvi objekt, aga mis ise ei ole vaadeldav. Kui see varjatud juhuslik protsess on Markovi ahel, siis tulemus on varjatud Markovi mudel, mida on ohtralt uuritud ja rakendatud. Andmete struktuur on tihti keerulisem kui jada - näiteks pikslid moodustavad pildil võre. Puudel on aga eelis üldisemate graafide ees, sest puukujulise varjatud kihi korral on võimalik mitmeid vajalikke arvutusi teha kiiresti ja täpselt. Käesoleva töö eesmärk on varjatud Markovi mudelite segmenteerimisteooria üldistamine teistele varjatud Markovi välja mudelitele, eelkõige puudel defineeritud mudelitele. Töö esimeses pooles on esitatud ülevaade Markovi väljadest ja defineeritud varjatud Markovi välja mudel. Töö teises pooles on esitatud varjatud Markovi mudelite hübriidriski, vastavaid parimaid joondusi arvutava algoritmi ja k-bloki riski üldistused puudele. Hübriidriski väärtus seisneb konkreetse headuse kriteeriumi paikaseadmises, mis võimaldab ühendada keskmiselt kõige vähem vigu tegev klassifitseerija ja kõige suurema tõepäraga tulemusi andev klassifitseerija ühtsesse, heade omadustega klassifitseerijate peresse, mille seast on võimalik valida sobiv kompromiss tõepära ja täpsuse vahel. Samuti on esitatud Baum-Welchi algoritmi vahetu üldistus puudele, millega saab hinnata mudeli parameetreid. Hübriidalgoritmi töö tulemusi ja nende täpsust on illustreeritud simulatsioonidega.