Andmebaasi logo
Valdkonnad ja kollektsioonid
Kogu ADA
Eesti
English
Deutsch
  1. Esileht
  2. Sirvi autori järgi

Sirvi Autor "Kolberg, Liis" järgi

Tulemuste filtreerimiseks trükkige paar esimest tähte
Nüüd näidatakse 1 - 2 2
  • Tulemused lehekülje kohta
  • Sorteerimisvalikud
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    Developing and applying bioinformatics tools for gene expression data interpretation
    (2021-05-19) Kolberg, Liis; Peterson, Hedi, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkond
    Tänapäeva tehnoloogiad võimaldavad teadlastel korraga mõõta kõikide geenide avaldumise ehk ekspressiooni tasemeid erinevates tingimustes ja inimgruppides. Näiteks mõõdetakse geenide ekspressiooni kasvaja diagnoosiga inimeste vähi- ja normaalses koes. Tulemuseks on mahukad andmestikud kümnete tuhandete geenide ekspressioonitasemetega, kust otsitakse sarnase profiiliga geene, mis võivad olla kaasatud teatud vähitüübi avaldumisse. Selleks kasutatakse erinevaid andmekaeve meetodeid ning statistilisi teste, mis leiavad sarnaselt käituvate geenide grupid. Nende geenigruppide paremaks mõistmiseks koondatakse nende kohta teada olev info ja tuvastatakse sealt ühised kirjeldused. Nii võib leida varem vähem uuritud geenidele uusi funktsioone või uuritava haigusega seotud uusi geene. Sellise analüüsi raames on vaja rakendada mitmeid meetodeid ja teha suurel hulgal statistilisi teste, mille läbi viimiseks loovad bioinformaatikud erinevaid tööriistu. Käesolevas doktoritöös arendasime kahte tööriista, g:Profiler ja funcExplorer, mis aitavad geeniekspressiooni andmeid lihtsalt interpreteerida. g:Profiler leiab geeninimekirjade kirjeldustest olulise ühisosa, funcExplorer grupeerib sarnase profiiliga geenid, võttes arvesse ka g:Profileri leitud kirjeldusi. Muuhulgas esitavad antud tööriistad tulemusi jooniste abil ja interaktiivselt, võimaldades kiirelt hoomata andmete sisu ning jagada saadud tulemusi teistega. Töö teises osas uurisime geenide ekspressiooni mõjutavaid geneetilisi variante. Selleks leidsime funcExploreriga esmalt sarnase ekspressiooniga geenigrupid. Seejärel tuvastasime geneetilised variandid, mis mõjutavad nende geenide avaldumise taset. Lõpuks kasutasime g:Profilerit, et tõlgendada saadud gruppe ja seeläbi ka neid mõjutavaid geneetilisi variante. Tehtud analüüsi käigus leidsime uue seose, mille oluliseks osaks on ekspressiooni mõõtmise aeg ja tingimused ning kinnitasime mitmeid varasemalt leitud tugevaid seoseid geneetiliste variantide ja geeniekspressiooni vahel.
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    Krediidiswapi preemiamaksete suuruse leidmine firma struktuurimudelite korral
    (Tartu Ülikool, 2015) Kolberg, Liis; Kangro, Raul, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatilise statistika instituut
    Käesolevas magistritöös uuritakse krediidiswapi preemiamaksete suuruse leidmist. Töös kirjeldatakse krediidiswapi lepingut ning esitatakse valem preemiamakse suuruse leidmiseks. Osutub, et preemiamakse määramine taandub lepingu aluseks oleva firma laostumistõenäosuse leidmisele. Firma laostumistõenäosuse hindamiseks kirjeldatakse töös kahte firma struktuurimudelit – Mertoni mudelit ja topelteksponentjaotusega hüppedifusiooniprotsessi mudelit. Nende mudelite raames leitakse krediidiswapi preemiamaksete suurus.

DSpace tarkvara autoriõigus © 2002-2025 LYRASIS

  • Teavituste seaded
  • Saada tagasisidet