Browsing by Author "Leets, Peeter"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Augmenting public sector data-driven decision support systems with expert knowledge: case of OTT(Tartu Ülikool, 2022) Leets, Peeter; Solvak, Mihkel, juhendaja; Võrk, Andres, juhendaja; Tartu Ülikool. Sotsiaalteaduste valdkond; Tartu Ülikool. Johan Skytte poliitikauuringute instituutPublic sector data-driven decision support systems are uniquely challenging to design due to the ramifications they have on the societal level. Accountability and ethical considerations require these systems to arrive at an equilibirium between accuracy and interpretability amid various implementation and data constraints. While these systems need to contribute to legitimate governance through reasoned and explainable decision-making, they also need to accurately model the policy outcomes they were designed to support. Inopportunely, inductive data-driven systems struggle to solve problems that rely on heuristic input. In this thesis, a particular knowledge engineering technique was adopted to augment a public sector Machine Learning decision support tool with domain expert knowledge. The case in question is OTT – a job-seeker profiling tool used by the Estonian Unemployment Insurance Fund to predict the long-term unemployment risks of their clients. Upon augmenting it with knowledge from caseworkers and data scientists associated with the project, some evidence was found that accounting for expert knowledge in probabilistic data-driven models can lead to a model that performs better on new out-of-sample data and is more in line with underlying domain rules. This yields important implications on the future of Machine Learning in the public sector as it opens up new potential use cases in avenues where 1) labelled training data is hard to come by, 2) a more generalizable model is preferred due to frequent changes in the surrounding context, 3) a model has to perfectly mimic domain logic for interpretability and explainability reasons.Item Individuaalse hääle verifitseerimise võimaluse mõju usaldusele e-valimiste vastu(Tartu Ülikool, 2020) Leets, Peeter; Solvak, Mihkel, juhendaja; Tartu Ülikool. Sotsiaalteaduste valdkond; Tartu Ülikool. Johan Skytte poliitikauuringute instituutIndividuaalse hääle verifitseerimine on komponent turvalisest e-valimissüsteemist, millel on kaks põhilist ülesannet: süsteemivastaste rünnete tuvastamine ning e-hääletaja usalduse tõstmine e-valimiste vastu. Käesolev uurimus keskendub viimasele ning püüab empiirilistele andmetele tuginedes seletada, kas ja mil määral on Eestis 2013. aastal kasutusele võetud verifitseerimine valija usaldustaset mõjutanud. Usalduse ja verifitseerimise vahelist seost uurisid 2016. aastal põgusalt Mihkel Solvak ja Kristjan Vassil. Toona kolme üleriigilise valimise põhjal tehtud uuring näitas, et verifitseerimise kasutamine usaldusele olulist mõju ei avaldanud, sest rakendust kasutas väga väike ja unikaalne grupp e-hääletajaid, keda iseloomustas muuhulgas kõrge arvutikasutusoskus ning kalduvus e-valimisi juba eos usaldada. Kuna tehnoloogia areneb tänapäeval kiiresti, oli paslik nüüd, neli aastat hiljem, verifitseerimise ja valija usalduse vaheline seos taas luubi alla võtta. Käesolevas töös analüüsiti valimisjärgseid läbilõikeküsitlusi ja tõlgendati tulemusi tehnoloogia usaldust ja difusiooni seletavate teooriatega. Selgus, et verifitseerimine on varajases innovatsioonijärgus ning seda kasutab endiselt väga spetsiifiliste tunnuste ja kõrge usaldustasemega e-valijate grupp, mistõttu efekt valija usaldustasemele tegelikkuses praktiliselt puudub. Asjaolu, et verifitseerimine ei ole kuute valimiste jooksul laiema kasutajaskonna seas levima hakanud, võib tähendada seda, et rakendus ei pruugi sellisel kujul ka tulevikus valija usaldustaset mõjutama hakata.