Andmebaasi logo
Valdkonnad ja kollektsioonid
Kogu ADA
Eesti
English
Deutsch
  1. Esileht
  2. Sirvi autori järgi

Sirvi Autor "Niglas, Heiki" järgi

Tulemuste filtreerimiseks trükkige paar esimest tähte
Nüüd näidatakse 1 - 1 1
  • Tulemused lehekülje kohta
  • Sorteerimisvalikud
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    Lipschitzi kujutused ja M-ideaalid
    (Tartu Ülikool, 2014-08-13) Niglas, Heiki; Oja, Eve, juhendaja; Zolk, Indrek, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituut
    Käesolevas magistritöös näidatakse üksikasjalikult, kuidas Nigel J. Kaltoni artiklis [K2, Theorem 6.6] tõestatud teoreemist järeldub positiivne lahendus Dirk Werneri and Heiko Berningeri poolt artiklis [BW] uuritud probleemile: kas väike Hölderi ruum lip([0; 1] ), kus 0 < < 1, on M-ideaal suures Hölderi ruumis Lip([0; 1] )? Magistritöös tõestatakse samuti kaks uut tulemust väikese Lipschitzi ruumi lip(M) kohta. Esiteks tõestatakse, et kui M on kompaktne meetriline ruum, siis ruumil lip(M) on omadus (M ). Teiseks näidatakse, et kui M on kompaktne meetriline ruum ja ruumil lip(M) on meetriline aproksimatsiooniomadus, siis ruumil lip(M) on omadus (M1). Kasutades neid tulemusi tõestatakse mitu olulist järeldust. Esimese teoreemi abil näidatakse muu hulgas, et kui M on kompaktne meetriline ruum ja X on selline Banachi ruum, mille korral ruum K(X) on M-ideaal ruumis L(X), siis ruum K(lip(M);X) on M-ideaal ruumis L(lip(M);X). Teise teoreemi abil saadakse, et kui M kompaktne meetriline ruum ja ruumil lip(M) on meetriline aproksimatsiooniomadus, siis ruum K(lip(M); Y ) M-ideaal ruumis L(lip(M); Y ) iga Banachi ruumi Y korral.

DSpace tarkvara autoriõigus © 2002-2025 LYRASIS

  • Teavituste seaded
  • Saada tagasisidet