M(r, s)-ideals of compact operators
Date
2012-05-22
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Funktsioonide ruumid, mida uuritakse funktsionaalanalüüsis, tekivad loomulikul moel kõikjal meie ümber, näiteks meid ümbritsevaid helisid saab vaadelda funktsiooniruumina. M(r,s)-ideaal on teatav funktsionaalanalüüsi struktuur, mis võimaldab uurida funktsiooniruumide ja, veelgi üldisemalt, Banachi ruumide ehitust. Käesolev teema kuulub Banachi ruumide geomeetria uurimise valdkonda.
Alates M(r,s)-ideaalide teooria algusest, on olnud üheks huvipakkuvaks küsimuseks, milliste Banachi ruumide X ja Y korral ruumist X ruumi Y tegutsevate kompaktsete operaatorite alamruum K(X,Y) osutub M(r,s)-ideaaliks kõigi pidevate lineaarsete operaatorite ruumis L(X,Y). See problem on huvipakkuv näiteks seetõttu, et M(1,s)-ideaalil määratud igal pideval lineaarsel funktsionaalil leidub ühene normi säilitav jätk kogu ruumile. Teiseks annab M(r,s)-ideaalide struktuuri olemasolu teavet ruumi L(X,Y) kaasruumi ehituse kohta. Sugugi vähetähtis pole ka kompaktsete operaatorite M(r,s)-ideaalide teooria seos aproksimatsiooniomaduste teooriaga, kus veel tänapäevalgi on aastakümnetevanuseid kuulsaid lahendamist ootavaid probleeme. Väitekirjas uuritakse, kuidas Banachi ruumid X, mille korral K(X,X) on M(r,s)-ideaal ruumis L(X,X), tekitavad uusi kompaktsete operaatorite M(r,s)-ideaale, milliseks kujunevad sellisel juhul uute tekkinud M(r,s)-ideaalide parameetrid, ja rakendatakse kompaktsete operaatorite u-ideaalidele M(r,s)-ideaalide jaoks väitekirjas loodud metoodikat.
Function spaces studied by functional analysis are all around us, take, for example, all the sounds which surround us. M(r,s)-ideals are tools to study structure of function spaces and, more generally, of Banach space. The subject belongs to into the field of geometry of Banach spaces From the beginning of the M(r,s)-ideal theory, the problem of identifying, for which Banach spaces X and Y, the space of compact operators K(X,Y) is an M(r,s)-ideal in the space of all bounded linear operators L(X,Y), has attracted a number of authors. The question is of interest, for example, because for every linear functional defined on an M(1,s)-ideal, there exists a unique norm-preserving extension to the whole space. Secondly, the existence of M(r,s)-ideals gives information about the dual space of L(X,Y). Not less important is the connection between M(r,s)-ideals and the theory of approximation properties, where even today there are famous unsolved questions which have been open for decades. The objective of this thesis is to investigate how departing from Banach spaces X such that K(X,X) is an M(r,s)-ideal in L(X,X), new classes of M(r,s)-ideals of compact operators can be obtained, how the parameters r and s are affected by forming new M(r,s)-ideals, and to study u-ideals of compact operators using the methodology developed for M(r,s)-ideals.
Function spaces studied by functional analysis are all around us, take, for example, all the sounds which surround us. M(r,s)-ideals are tools to study structure of function spaces and, more generally, of Banach space. The subject belongs to into the field of geometry of Banach spaces From the beginning of the M(r,s)-ideal theory, the problem of identifying, for which Banach spaces X and Y, the space of compact operators K(X,Y) is an M(r,s)-ideal in the space of all bounded linear operators L(X,Y), has attracted a number of authors. The question is of interest, for example, because for every linear functional defined on an M(1,s)-ideal, there exists a unique norm-preserving extension to the whole space. Secondly, the existence of M(r,s)-ideals gives information about the dual space of L(X,Y). Not less important is the connection between M(r,s)-ideals and the theory of approximation properties, where even today there are famous unsolved questions which have been open for decades. The objective of this thesis is to investigate how departing from Banach spaces X such that K(X,X) is an M(r,s)-ideal in L(X,X), new classes of M(r,s)-ideals of compact operators can be obtained, how the parameters r and s are affected by forming new M(r,s)-ideals, and to study u-ideals of compact operators using the methodology developed for M(r,s)-ideals.
Description
Keywords
Banachi ruumid, ideaalid (mat.), Banach spaces, ideals (math.)