Deformation-dependent electrode impedance of ionic electromechanically active polymers

Date

2012-11-14

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Elektromehaaniliselt aktiivsed materjalid on polümeeridel põhinevad mitmekihilised komposiitmaterjalid, mis muudavad oma välist kuju, kui neid elektriliselt stimuleerida; tihti nimetatakse neid ka tehislihasteks. Taolistest materjalidest valmistatud täiturid pakkuvad huvi nii mikrolaborseadmetes kui ka loodust matkivas robootikas, sest võimaldavad luua keerukaid ülipisikesi ajameid. Võrreldes tavapäraste elektrimootoritega võimaldavad EAP-d (elektromehaaniliselt aktiivsed polümeerid) helitut liigutust ning neid saab lõigata konkreetse rakenduse jaoks sobivasse suurusesse. EAP-d jagunevad kahte põhiklassi: elektron- ja ioon-EAP. Doktoritöös käsitletakse kahte erinevat ioon-EAP materjali, kus mehaaniline koste on tingitud ioonide ümberpaigutumisest kolmekihilises komposiitmaterjalis. Kuna EAP-de elektromehaanilised omadused sõltuvad lisaks sisendpinge amplituudile ja sagedusele ka tugevasti ümbritseva keskkonna parameetritest (nt niiskus ja temperatuur), siis on nendest materjalidest loodud täiturite juhtimiseks tarvilik kasutada tagasisidet. Täiendav tagasisideallikas võib oma omaduste tõttu aga vähendada EAP-de rakendusvõimalusi ning seetõttu on eesmärgiks luua n-ö isetundlik EAP ajam, mis funktsioneerib samaaegselt nii täituri kui ka liigutusandurina. Doktoritööd esitatakse uuritud materjalide elektroodi impedantsi ja deformatsiooni vaheline seos ning kirjeldatakse vastav elektriline mudel. Eraldamaks andursignaali täituri sisendpingest pakutakse välja elektroodikihi piires täituri ja anduri elektriline eraldamine. Loobudes ainult elektroodimaterjalist säilitab polümeerkarkass täituri ja anduri mehaanilise ühendatuse – seega taolises süsteemis järgib sensor täituri kuju, kuigi need on elektriliselt lahti sidestatud. Elektroodimaterjali valikuliseks eemaldamiseks kasutatakse mitmeid erinevaid meetodeid (freesimine, laserablatsioon jne) ning ühtlasi uuritakse nende kasutusmugavust ja protsessi mõju kogu komposiitmaterjalile.
Electromechanically active materials are polymer-based composites exhibiting mechanical deformation under electrical stimulus, i.e. they can be implemented as soft actuators in variety of devices. In comparison to conventional electromechanical actuators, their key characteristics include easy customisation, noiseless operation, straightforward mechanical design, sophisticated motion patterns, etc. Ionic EAPs (electromechanically active polymers) are one of two primary classes of electroactive materials, where actuation is caused mostly by the displacement of ions inside polymer matrix. Mechanical response of ionic EAPs is, in addition to voltage and frequency, dependent on environmental variables such as humidity and temperature. Therefore a major challenge lies in achieving controlled actuation of these materials. Due to their size and added complexity, external feedback devices inhibit the application of micro-scale actuators. Hence, self-sensing EAP actuators—capable for simultaneous actuation and sensing—are desired. In this thesis, sensing based on deformation-dependent electrochemical impedance is demonstrated and modelled for two types of trilayer ionic EAPs—ionic polymer-metal composite and carbon-polymer composite. Separating sensing signal from the input signal of the actuator is achieved by patterning the electrode layers of an IEAP material in a way that different but mechanically coupled sections for actuation and sensing are created. A variety of concepts for pattering the electrode layers (machining, laser ablation, masking, etc.) are implemented and their applicability is discussed.

Description

Väitekirja elektrooniline versioon ei sisalda publikatsioone.

Keywords

elektroaktiivsed polümeerid, elektroodprotsesside keemia, electroactive polymers, chemistry of electrode processes

Citation