Carbon materials for energy storage applications
Failid
Kuupäev
2018-07-05
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Uudsete energia salvestuse süsteemide väljaarendamine ning olemasolevate energia salvestuse süsteemide optimeerimine on vajalik selleks et enamus kasutatavast energiast saaks pärineda taastuvatest energiaallikatest. Süsinikmaterjalid on tähtsaks komponendiks paljudes energiat salvestavates süsteemides, näiteks elektroodmaterjalidena patareides ning elektrilise kaksikkihi kondensaatorites või adsorbeerivate materjalidena energeetilise väärtusega gaasi hoiustamiseks. Süsinikmaterjalide struktuuri ning pinda saab muuta suurel määral lähtematerjali ning sünteesitingimuste valikuga. Paremate energiat salvestavate süsteemide, mis sisaldavat süsinikmaterjale, kavandamiseks on vaja hästi mõista süsinikmaterjalide struktuuri ja pinnaomaduste mõju antud süsteemide tööprotsessile.
Süsiniku pinnaomaduste üheks tähtsamaks parameetriks on eripindala, ehk materjali pindala ühe massiühiku kohta. Suure eripinna tagavad eeskätt materjali pinnas esinevad väikesed avavused ning pinna ebaühtlused, ehk poorid. Poorid võivad omada erinevaid mõõtmeid, mille järgi klassifitseeritakse poorid suuruse järgi mikro-, meso- ning makropoorideks. Süsinikmaterjalide puhul omavad suurimat huvi mikropoorsed materjalid, kus pooride mõõtmed on alla paari nanomeetri.
Erinevate pinnaomadustega ning struktuuri korrapäraga süsinikmaterjale uuriti elektrilise kaksikkihi kondensaatorite elektroodidena, metaani adsorbentidena ning kandematerjalina vesinikku salvestava materjali parendamiseks. Antud töö kinnitas, et energia mida on võimalik salvestada pinnaühiku kohta kasvab ühtlaselt pinna suurenemisega juhul kui toimub ilma laenguta gaasimolekuli adsorptsioon. Energia mida on võimalik salvestada pinnaühiku kohta omab piirilist väärtust pinna suurenemisega juhul kui toimub laetud osakeste adsorptsioon elektrilisse kaksikkihti. Lisaks eripinna suurele tähtsusele määrati metaani salvestamise suurem efektiivsus kui kasutati korrapäratumaid ning väiksemate pooridega materjalide. Süsinikmaterjali kasutamine komplekshüdriidi kandematerjalina alandas temperatuuri, mille juures algas vesiniku eraldumine, üle 100 °C võrreldes puhta kompleksmetallhüdriidiga.
For standalone renewable energy production to be viable novel energy storage systems need to be developed or existent systems need to be improved. Carbon materials are an important component in many energy storage systems, from battery and electrical double layer capacitor electrodes to energetically valuable gas adsorbents. Depending on the carbon material synthesis conditions and used precursor material carbon materials surface properties and structure can be varied in a wide margin. To design better energy storage systems, which contain carbon materials, it is necessary to have a deep understanding of the influence of carbon materials structure and surface properties on the processes in energy storage systems. Specific surface area, surface per unit of mass, is one of the most important carbon surface parameters characterising the surface of carbon materials. A large specific surface area is possible in case of a porous structure. Based on the size pores are categorised as micro- meso- and macropores. In case of carbon materials micropores, pore dimensions under two nanometres, are of greatest interest. Carbon materials with different structural properties were investigated as electrode materials in electrical double layer capacitors, adsorbents for methane and as a supporting material to improve the hydrogen storage performance of a complex metal hydride. This work affirmed that the energy stored increases linearly with the increase of specific surface area in case of molecular gas adsorption. The energy stored has a limiting value with the increase of surface area in case of adsorption of ions in an electrical double layer. Efficiency of methane adsorption was improved when more disordered carbon materials with smaller pores were used. The use of microporous carbon as a supporting material for complex metal hydride, NaAlH4, lowered the temperature at which the release of hydrogen started by over 100 °C.
For standalone renewable energy production to be viable novel energy storage systems need to be developed or existent systems need to be improved. Carbon materials are an important component in many energy storage systems, from battery and electrical double layer capacitor electrodes to energetically valuable gas adsorbents. Depending on the carbon material synthesis conditions and used precursor material carbon materials surface properties and structure can be varied in a wide margin. To design better energy storage systems, which contain carbon materials, it is necessary to have a deep understanding of the influence of carbon materials structure and surface properties on the processes in energy storage systems. Specific surface area, surface per unit of mass, is one of the most important carbon surface parameters characterising the surface of carbon materials. A large specific surface area is possible in case of a porous structure. Based on the size pores are categorised as micro- meso- and macropores. In case of carbon materials micropores, pore dimensions under two nanometres, are of greatest interest. Carbon materials with different structural properties were investigated as electrode materials in electrical double layer capacitors, adsorbents for methane and as a supporting material to improve the hydrogen storage performance of a complex metal hydride. This work affirmed that the energy stored increases linearly with the increase of specific surface area in case of molecular gas adsorption. The energy stored has a limiting value with the increase of surface area in case of adsorption of ions in an electrical double layer. Efficiency of methane adsorption was improved when more disordered carbon materials with smaller pores were used. The use of microporous carbon as a supporting material for complex metal hydride, NaAlH4, lowered the temperature at which the release of hydrogen started by over 100 °C.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone
Märksõnad
energy storage, carbon materials