Design of peptide-based vector for nucleic acid delivery in vivo

Date

2018-08-13

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Nukleiinhappeid saab kasutada geeniteraapiaks, et reguleerida haigust esilekutsuvaid geene. Nõnda on võimalik parandada mitmesuguseid raskeid geneetilisi haigusi, nagu näiteks tsüstiline fibroosi, Duchenne'i lihasdüstroofiat ning pahaloomulisi kasvajaid. Kahjuks takistab nukleiinhapete sisenemist rakku, ning seega ka nende efektiivset kasutamist geeniteraapias, nukleiinhapete laeng ning suurus. Selleks, et suurendada nukleiinhapete terapeutilist efekti on vajalik kasutada nende transpordiks (transfektsiooniks) rakku tranfektsioonivektoreid. Üheks tranfektsioonivektoriks on rakku sisenevad peptiidid (RSP). RSP-d on tavaliselt kuni 30 aminohappe pikkused katioonsed ja/või amfipaatsed peptiidid, mis suudavad viia rakku mitmesuguseid biomolekule. Peamiseks probleemiks RSP kasutamisel on nende peptiidide vähene transfektsiooni efektiivsus in vivo. Lisaks on RSP tavaliselt vaja modifitseerida, et muuta neid selektiivseks konkreetse koe ja rakutüübi suhtes, et vähendada võimalike kõrvalmõjude teket. Samuti on oluline kontrollida moodustatud RSP-nukleiinhappe osakeste füsiko-keemilisi omadusi, sest ka sellest sõltub osakeste distributsioon organismis. Antud töö eesmärgiks oli tegeleda peamiste RSP kasutamist takistavate probleemidega. Käesolevas töös disainiti uus NF55 peptiid efektiivsemaks in vivo DNA transfekstiooniks. Seejärel kasutati uut formulatsiooni meetodi, et valmistada väiksema läbimõõdu ning kindla suurusjaotusega RSP-DNA osakesi selektiivsemaks ning efektiivsemaks in vivo manustamiseks. Viimaks lisati RSP-nukleiinhappe osakestele magnetilisi rauaoksiidi partikleid, et muuta RSP-nukleiinhapete osakeste bioloogilist aktiivsust veelgi selektiivsemaks. Kokkuvõttes arendati antud töös formulatsiooni meetod, millega on võimalik valmistada palju efektiivsemaid nanopartikleid spetsiifiliselt in vivo manustamiseks.
Various serious genetic diseases, such as cystic fibrosis, Duchenne muscular dystrophy and cancer can be treated with gene therapy. Gene therapy can be utilized to regulate the expression of disease causing genes by using therapeutic nucleic acids. Due to their size and cationic nature, these nucleic acids need vectors to enhance their delivery into the diseased tissue. Although impressive results have been accomplished with virus-derived gene delivery vectors their utilization is not without risks and increasingly more effort has been applied into the research of non-viral vectors. Cell penetrating peptides are one group of non-viral delivery vectors. Cell penetrating peptides (CPP) are short cationic and/or amphipathic peptides than are shown to significantly improve the delivery of various biomolecules in vitro and in vivo. The main hindrances of using CPPs are the lack of transfection efficacy and selectivity in vivo. In addition, the size and heterogenous size distribution of prepared CPP-DNA particles also alters the bio-distribution of particles and can cause side-effects. In this thesis we aimed to tackle these previously mentioned main problems of utilization of CPPs. We designed a novel effective CPP NF55 for the systemic delivery of DNA. Thereafter we developed a novel method to prepare stable and uniformly sized particles for systemic gene delivery in vivo. Subsequently, we used incorporation of magnetic iron oxide particles to further increase the efficacy and specificity of the peptide vectors. Taken together, we designed more efficient and safer formulations of CPP/nucleic acid particles for the systemic in vivo delivery of nucleic acids.

Description

Väitekirja elektrooniline versioon ei sisalda publikatsioone

Keywords

nucleic acids, cell-penetrating peptides, biological transport, in vivo, gene therapy

Citation