Post-quantum security in the presence of superposition queries
Kuupäev
2018-11-26
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Teadlased ja insenerid on juba mõnda aega püüdnud ehitada kvantseadustel põhinevat arvutit. See uus masin (kvantarvuti) on võimeline lahendama arvutuslikult keerulisi ülesandeid, nagu näiteks täisarvude tegurdamine, palju kiiremini kui ükski klassikaline arvuti. Tegurdamisel tuleb täisarv esitada väiksemate täisarvude korrutisena. Näiteks arvu 15 tegurdamiseks tuleb see esitada korrutisena 3 x 5. Suure arvu tegurdamine klassikalisel arvutil võtab väga kaua aega, samas kui kvantarvuti suudab selle ülesande raskusteta oluliselt kiiremini lahendada. Suure ajalise keerukusega probleemide kiire lahendamine on küll põnev saavutus, kuid paraku põhinevad praegu laialdases kasutuses olevad krüpteerimisalgoritmid, nagu näiteks RSA, just tegurdamise keerukusel. Keegi ei saa meie krüpteeritud andmeid dekrüpteerida, kui tal puudub võimekus kiiresti tegurdada. RSA algoritmi kasutamine krüptosüsteemides on väga levinud. Näiteks Eesti ID-kaart kasutab RSA algoritmi digitaalseks allkirjastamiseks ja ka muude teenuste jaoks. Kuna kvantarvuti suudab aga kiiresti tegurdada, ei ole RSA algoritm suurte kvantarvutite vastu turvaline. Postkvant-krüptograafia on uus valdkond, mis tegeleb just selliste probleemidega. Eesmärgiks on konstrueerida krüpteerimisalgoritm, mis on turvaline isegi kvantründajate vastu. Esimeseks sammuks on leida matemaatiline probleem, mis on keeruline ka kvantarvutite jaoks. Seejärel on võimalik konstrueerida krüptograafilisi algoritme, mis põhinevad neil probleemidel. Lõpuks tuleb tõestada, et meie krüptograafiline skeem on turvaline. Selles väitekirjas keskendume eelnimedatud sammudest just viimasele. Me verifitseerime osade krüptosüsteemide turvalisuse kvantründajate suhtes ja tõestame, et osad krüptograafilised konstruktsioonid on kvantturvalised.
Have you heard of Quantum Computers? Scientists and engineers are working to build a computer based on laws of nature (or quantum mechanics). This new machine (a quantum computer) can solve some computationally hard tasks, for instance integer factorization, much faster than any classical computer (computers that we use nowadays). The integer factorization problem is the problem of writing an integer number as a product of smaller integers. For instance given 15, the algorithm has to find 3 x 5. When a number is large, the integer factorization needs a long time to be solved using a classical computer. In contrast, a quantum computer can solve the integer factorization mush faster. It sounds cool and interesting that we would solve some problems faster. However, we use a cryptosystem based on integer factorization, named RSA, to encrypt data. No one can learn about our data unless they can solve the factoring problem. The RSA encryption scheme is widely used cryptosystem. For instance Estonian ID card uses RSA algorithm for digital signatures and other services. Since a quantum computer can solve the factoring problem, the RSA scheme is not secure in the presence of a large-scale quantum computer. Post-quantum cryptography is an emerging discipline that deals with this issue. The goal is to have cryptographic constructions that are secure even for a quantum attacker. The first step is to find a mathematical problem that is hard to solve even for a quantum computer. Then, the second step is to design a cryptographic scheme based on a quantum-hard problem. And finally, we need to prove mathematically the security of our scheme. In this thesis, we focus on the third step. We verify the security of some cryptosystems against a quantum attacker. We prove the security of some cryptographic constructions against a quantum adversary.
Have you heard of Quantum Computers? Scientists and engineers are working to build a computer based on laws of nature (or quantum mechanics). This new machine (a quantum computer) can solve some computationally hard tasks, for instance integer factorization, much faster than any classical computer (computers that we use nowadays). The integer factorization problem is the problem of writing an integer number as a product of smaller integers. For instance given 15, the algorithm has to find 3 x 5. When a number is large, the integer factorization needs a long time to be solved using a classical computer. In contrast, a quantum computer can solve the integer factorization mush faster. It sounds cool and interesting that we would solve some problems faster. However, we use a cryptosystem based on integer factorization, named RSA, to encrypt data. No one can learn about our data unless they can solve the factoring problem. The RSA encryption scheme is widely used cryptosystem. For instance Estonian ID card uses RSA algorithm for digital signatures and other services. Since a quantum computer can solve the factoring problem, the RSA scheme is not secure in the presence of a large-scale quantum computer. Post-quantum cryptography is an emerging discipline that deals with this issue. The goal is to have cryptographic constructions that are secure even for a quantum attacker. The first step is to find a mathematical problem that is hard to solve even for a quantum computer. Then, the second step is to design a cryptographic scheme based on a quantum-hard problem. And finally, we need to prove mathematically the security of our scheme. In this thesis, we focus on the third step. We verify the security of some cryptosystems against a quantum attacker. We prove the security of some cryptographic constructions against a quantum adversary.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone
Märksõnad
cryptography, quantum cryptography, safety