Unravelling signalling pathways contributing to stomatal conductance and responsiveness
Kuupäev
2019-07-04
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Taimede ellujäämine muutuvas keskkonnas sõltub taimelehtede pinnal asuvatest mikroskoopilise suurusega õhulõhedest. Õhulõhed koosnevad kahest sulgrakust ja nende vahele jäävast õhupilust ning reguleerivad taimede gaasivahetust. Fotosünteesiks vajalik CO2 siseneb lehte läbi õhulõhede, samaaegselt väljub juurtega omastatud vesi transpiratsiooni käigus. Õhulõhede juhtivus on oluline lehe füsioloogiline tunnus, mis väljendab veeauru eraldumise kiirust lehepinnalt ning määrab taimede kasvu, stressitaluvuse ning tootlikkuse. Keskkonnast ja taimesisestest signaalidest lähtuv õhupilu laiuse kiire ja õhulõhede tiheduse pikemas ajaskaalas toimuv regulatsioon määravad õhulõhede juhtivuse väärtuse. Käesolevas töös uurisime taimehormooni abstsiishappe (ABA) rolli õhulõhede juhtivuse reguleerimisel ning leidsime, et mida väiksem oli ABA sisaldus lehes, seda kõrgem oli õhulõhede juhtivus. Kõrgem õhulõhede juhtivus tulenes laiemast õhupilust ning suuremast õhulõhede tihedusest. Seega kaotasid ABA-defitsiitsed taimed transpiratsiooni käigus rohkem vett, samas olid nad sellegipoolest võimelised sulgema õhupilusid stressitingimustes. Lisaks leidsime, et õhulõhede sulgrakud ning floeemi saaterakud on olulised ABA biosünteesi kohad. OST1, üks olulisemaid valke ABA signaalrajas, reguleeris õhulõhede tundlikkust vastusena keskkonnatingimustele ja ABA-le, kuid ei osalenud õhulõhede tiheduse määramisel. Lisaks uurisime farnesüleerimist läbiviiva valgu ERA1 rolli õhulõhede regulatsioonis ning leidsime, et ERA1 osaleb õhulõhede juhtivuse määramises ning sinise valguse põhjustatud õhupilude avanemises. Õhulõhede arengu ning avanemise ja sulgumise regulatsiooni mõistmine on oluline, et aretada erinevatesse keskkonnatingimustesse sobivaid taimi, mis oleks ühtpidi efektiivsema vee kasutusega, kuid samas võimalikult kõrge fotosünteesiga ning sellest tulenevalt saagikamad.
Survival of plants in the changing environment depends largely on stomata, small pores surrounded by a pair of specialized guard cells on the aerial surface of plants. Stomata control gas exchange between the leaf and atmosphere – uptake of CO2 for photosynthesis and loss of water through transpiration. Plant growth, stress-related water management and production depend on the appropriate control of stomatal conductance, one of the most important leaf physiological traits. Rapid changes in the stomatal aperture width and changes in the number of stomata (stomatal density) on a longer timescale both affect stomatal conductance and enable to regulate it according to endogenous and environmental cues. We studied the role of plant hormone abscisic acid (ABA) in controlling stomatal conductance and found that reduced leaf ABA concentration led to higher stomatal conductance. This was associated with wider stomatal aperture width and increased stomatal density of these plants. ABA-deficient plants thus lost more water to the atmosphere, but were still able to respond to environmental changes with stomatal closure. We found that stomatal guard cells and phloem companion cells were important sources of ABA. We showed that OST1, a key positive regulator of ABA signalling, was important in stomatal responsiveness to environmental factors and ABA, but it was not involved in regulating stomatal development. Stomatal regulation by a farnesylating protein ERA1, which is suggested to be involved in ABA signalling, was also studied. We revealed that ERA1 is involved in determining the stomatal conductance and mediating the blue light-induced opening response. Understanding the mechanism of stomatal regulation gives information for breeding crop plants productive in different climatic conditions. The focus is on developing more water use efficient plants with reduced stomatal conductance without compromising in photosynthesis and ultimately, in crop yields.
Survival of plants in the changing environment depends largely on stomata, small pores surrounded by a pair of specialized guard cells on the aerial surface of plants. Stomata control gas exchange between the leaf and atmosphere – uptake of CO2 for photosynthesis and loss of water through transpiration. Plant growth, stress-related water management and production depend on the appropriate control of stomatal conductance, one of the most important leaf physiological traits. Rapid changes in the stomatal aperture width and changes in the number of stomata (stomatal density) on a longer timescale both affect stomatal conductance and enable to regulate it according to endogenous and environmental cues. We studied the role of plant hormone abscisic acid (ABA) in controlling stomatal conductance and found that reduced leaf ABA concentration led to higher stomatal conductance. This was associated with wider stomatal aperture width and increased stomatal density of these plants. ABA-deficient plants thus lost more water to the atmosphere, but were still able to respond to environmental changes with stomatal closure. We found that stomatal guard cells and phloem companion cells were important sources of ABA. We showed that OST1, a key positive regulator of ABA signalling, was important in stomatal responsiveness to environmental factors and ABA, but it was not involved in regulating stomatal development. Stomatal regulation by a farnesylating protein ERA1, which is suggested to be involved in ABA signalling, was also studied. We revealed that ERA1 is involved in determining the stomatal conductance and mediating the blue light-induced opening response. Understanding the mechanism of stomatal regulation gives information for breeding crop plants productive in different climatic conditions. The focus is on developing more water use efficient plants with reduced stomatal conductance without compromising in photosynthesis and ultimately, in crop yields.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone
Märksõnad
õhulõhed, gaasivahetus, keskkonnategurid, regulatsioon (biol.), signaali transduktsioon, abstsiishape