Biosensing pesticides in water samples

Date

2020-05-14

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Pestitsiidide ülemaailmne kasutamine on viimastel aastakümnetel pidevalt kasvanud. Enamik kasutatud pestitsiide võivad reostada vett ja pinnast ning avaldada kahjulikku mõju elusorganismidele. Käesoleva doktoritöö raames töötati välja biosensorsüsteemid kahe probleemse pestitsiidi ‒ glüfosaadi (N-(fosfonometüül)glütsiin) ja karbarüüli (1-naftüül-N-metüülkarbamaat) määramiseks. Glüfosaat on enim kasutatud herbitsiid tänapäeval. Karbarüüli kasutati laialdaselt 2000. aastate keskpaigani ja kuigi Euroopa Liidus on selle kasutamine keelatud, on karbarüül siiani Ameerika Ühendriikides üks populaarsemaid karbamaatseid insektitsiide. Pestitsiidide määramiseks kasutatakse peamiselt kromatograafilisi meetodeid. Nende meetoditega saavutatakse küll madalad määramispiirid, kuid need on aeganõudvad ega sobi in situ ja on-line monitooringuks. Üheks alternatiiviks on kiiremaid ning reaalajas kohapeal läbiviidavaid analüüse võimaldavate biosensorite kasutamine. Doktoritöö käigus väljatöötatud biosensorsüsteem karbarüüli määramiseks põhines türosinaasi inhibeerimisel karbarüüli toimel ning glüfosaadi biosensor põhines konkureerival immunoanalüüsil, mis võimaldas erinevalt inhibeerimisel baseeruvatest biosensoritest analüüsitavat ainet väga selektiivselt tuvastada. Töö käigus optimeeriti määramisprotokolle ja testiti biosensoreid. Karbarüüli määramispiiriks saadi 0,2 mg/l ja glüfosaadi määramipiir saadi millimolaarse lähedale. Biosensorite rakendamise peamine eelis on see, et analüüse saab läbi viia ilma proovi eeltöötlemisetapita ja analüüsitulemused saadakse umbes poole tunniga. Lisaks uuriti glüfosaadi proovide stabiliseerimise ja kontsentreerimise võimalusi, et parandada glüfosaadi biosensori tundlikkust ja suurendada pestitsiidide kvantitatiivsete analüüside usaldusväärsust
The global use of pesticides has increased steadily over the past decades. Majority of the applied pesticides potentially contaminate water and soil, and can unfavourably affect biota. The aim of this study was to develop biosensors for the detection of two problematic pesticides ‒ glyphosate (N-phosphonomethyl-glycine) and carbaryl (1-naphthyl N-methylcarbamate). Currently glyphosate is the most extensively used herbicide for weed and vegetation control. Carbaryl was widely used until the mid-2000s, and although carbaryl is banned in EU, it is still one of the most popular carbamate insecticides in the United States. Detection of pesticides is commonly carried out with chromatographic methods which allow achieving low limit of detection, but are time consuming and are not suitable for in-field analyses. In order to achieve capability for quick and on-site specific testing of pesticides, biosensors are regarded as an alternative option. We developed different biosensing platforms for the detection of carbaryl and glyphosate. The carbaryl biosensor was based on the detection of the inhibiting effect of carbaryl on the catalytic activity of soluble tyrosinase. The glyphosate biosensor was based on competitive immunoanalysis, which unlike inhibition-based biosensors allows very selective detection of the targeted analyte. We optimized detection protocols and tested the biosensors. The limit of detection for carbaryl was found to be 0.2 mg/l and for glyphosate in millimolar concentration range. The main advantage of the application of biosensors is the fact that the sample pre-treatment step is not required and the results are obtained in about half an hour. In addition, we studied options for the stabilization and concentration of glyphosate samples to improve the sensitivity of glyphosate biosensor and enhance the reliability of quantitative analyses of pesticides

Description

Väitekirja elektrooniline versioon ei sisalda publikatsioone

Keywords

pesticides, pesticide residues, water, biosensors, fixed methods, environment pollution

Citation