Testing a computational theory of brain functioning with virtual reality
Kuupäev
2020-11-16
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Millised arvutuslikud põhimõtted juhivad teie mõtlemist ja käitumist? Kuigi teame üsna täpselt aju anatoomilist ehitust, puudub meil jätkuvalt arusaam selles osas, millised algoritmid ajus rakenduvad. Viimase kümnendi jooksul on neuroteadlaste seas poolehoidu võitnud aju toimimist kõikehõlmavalt seletav raamistik: vaba energia printsiip. Kokkuvõtvalt seletab see teooria nii meie tajuelamusi kui ka käitumist, väites et aju peamine eesmärk on minimeerida "vaba energiat". Seda saab teha läbi üllatavate olukordade vähendamise, rakendades aktiivse järeldamise protsessi.
Aktiivse järeldamise teooria testimiseks uurisime, kas aju pöörab vähem tähelepanu iseenda poolt kontrollitud jäsemeliigutustega kaasnevale visuaalsele sisendile. See tähendab, et ka muud objektid, mis jäävad liikuva käega samasse nägemisvälja piirkonda, peaksid olema aju jaoks vähem märgatavad. Lõime eksperimente, kus palusime liigutada inimestel oma kätt virtuaalreaalsusprillide ees, kuid olulise elemendina jägisime täpselt katseisiku käe asukohta ning muutsime selle virtuaalselt nähtamatuks. Nii oli meil võimalik mõõta, kas inimesed reageerisid või tajusid halvemini neid katsestiimuleid, mis ilmusid täpselt liikuva nähtamatu käe taha. Uuringute käigus arendasime lisaks ka vabavaralist tarkvara ning töötasime välja juhtnööre tulevaste psühholoogiliste virtuaalreaalsusuuringute tarbeks.
Meie katsetulemused näitasid erinevust reaktsiooniaegades ning kontrastide tajumises, kui katseobjekt ilmus täpselt inimese nähtamatu virtuaalse käe taha. Need andmed sobituvad hästi aktiivse järeldamise teooriaga, andes kinnitust ka laiemale vaba energia printsiibile aju toimimise seletamisel. Saadud teadmised on kasulikud inimaju arvutuslike põhimõtete mõistmisel, kuid võivad leida rakendust ka meditsiinis, robootikas ning tehisintellekti uuringutes. Teadmine, et inimesed on vähem võimelised märkama iseenda käitumise tagajärgi, omab väärtust ka keskkonnasõbralike jätkusuutlike käitumiste kujundamisel.
Which computational principles guide our thinking and behaviour? Although we know the anatomy of the brain in great detail, we are still lacking a clear understanding about the algorithms implemented in the brain. Over the last decade an unifying theory about brain functioning has become dominant among researchers, called the free energy principle. It tries to explain both perception and action by claiming that the brain always tries to minimize surprising situations using active inference. To test active inference, we studied if the brain pays less attention to the visual consequences of its own predicted limb movements. This means that other objects in the same area of field of view where the limb is moving should also be harder to spot for the person. We asked people to move their hand in front of their eyes while wearing a head-mounted display, but turned the precisely tracked hand virtually invisible so the hand itself would not visually interfere with the experiment. This allowed us to measure if people reacted more slowly or perceived worse the objects shown exactly behind the invisible hand. During the research we also developed open source virtual reality software and guidelines for future studies. Our results showed effects of longer reaction time and lower contrast perception when the test objects appeared behind the participants invisible virtual hand. These results fit well with the active inference framework of the free energy principle. These findings give us further insights on the computations of the human brain, but are also useful for medicine, robotics and artificial intelligence. Also, the notion of being less able to perceive the consequences of our own actions has value for the design of pro-environmental sustainable behaviours.
Which computational principles guide our thinking and behaviour? Although we know the anatomy of the brain in great detail, we are still lacking a clear understanding about the algorithms implemented in the brain. Over the last decade an unifying theory about brain functioning has become dominant among researchers, called the free energy principle. It tries to explain both perception and action by claiming that the brain always tries to minimize surprising situations using active inference. To test active inference, we studied if the brain pays less attention to the visual consequences of its own predicted limb movements. This means that other objects in the same area of field of view where the limb is moving should also be harder to spot for the person. We asked people to move their hand in front of their eyes while wearing a head-mounted display, but turned the precisely tracked hand virtually invisible so the hand itself would not visually interfere with the experiment. This allowed us to measure if people reacted more slowly or perceived worse the objects shown exactly behind the invisible hand. During the research we also developed open source virtual reality software and guidelines for future studies. Our results showed effects of longer reaction time and lower contrast perception when the test objects appeared behind the participants invisible virtual hand. These results fit well with the active inference framework of the free energy principle. These findings give us further insights on the computations of the human brain, but are also useful for medicine, robotics and artificial intelligence. Also, the notion of being less able to perceive the consequences of our own actions has value for the design of pro-environmental sustainable behaviours.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone
Märksõnad
virtual reality, brain functioning