Modelling the quantitative nature of neuropsychiatric disorders in animal models: metabolic, behavioural, and genetic profiles
Kuupäev
2023-04-27
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Vaimuhaigused on oma olemuselt heterogeensed häired, mille esinemine sõltub geneetilisest ja keskkonnast tingitud soodumusest. Vaimuhaiguste järkjärgulist avaldumist varjutab tihti loomulik areng, kaasneb ennustamatu kulg, teadmata ravi kõrvaltoimed ning inimese olemust määratleva kõrgema ajutalitluse ja tundeelu märkimisväärne häirumine. Vaimuhaiguste polügeneetilise olemuse tõttu on neid keeruline omavahel eristada, diagnoosida ja õigeaegselt ravida. Vaimuhaiguse varajane avastamine ja asjakohane ravi võimaldab haiguse süvenemist ning sellega kaasuvaid kulusid ennetada. Selleks on vaja leida ja õppida ära kasutama haiguse kulgu kajastavaid bioloogilisi markereid. Neid markereid tuleb otsida nii molekulaarsel, sünapsite, raku, koe, närvivõrkude ja kõrgematel närvisüsteemi tasanditel. Selle hoomamatu ülesande teevad võimalikuks erinevad lihtsustatud mudelid, sealhulgas geneetiliselt muundatud või farmakoloogiliselt manipuleeritud hiiremudelid. Käesolev väitekiri uurib kolme erinevat tahku mudelit: PPARGC1α vahendatud mitokondriaalse energiametabolismi rolli inhibitoorses neurotransmissioonis, metaboolset eelsoodumust psühhoosilaadses seisundis ja neuraalse adhesioonimolekuliperekonna IgLON puudulikust. Nende eri tahku mudelite mõistmine viib meid lähemale vaimuhaiguste paremale mudeldamisele ja võimalike raviteede avastamisele. Töös uuritud kolme mudeli leiud saab kokku võtta järgnevalt. PPARGC1α (PGC1α) üleekspressioonimutant võimaldab meeleoluhäirete mudeldamist. 129Sv hiireliini geneetiline taust lihtsustab psühhoosi mudeldamisel eelsoodumusega populatsioonis. IgLONite avaldumise muster viitab nende potentsiaalile peegeldada ebakorrapärasusi aju arengus ja töös.
Mental disorders are inherently heterogeneous conditions arising from various genetic and environmental insults. The gradual manifestation of mental disorder is often overshadowed by natural development; displays an unpredictable course, unknown side effects, and significant disturbances of cognition. The polygenetic nature of mental disorders makes them challenging to distinguish, diagnose and treat on time. Early detection and appropriate treatment of mental disorders are necessary to prevent the progression of symptoms and associated costs. Scientific research prioritises finding early biological markers that reflect the course of these disorders. These markers should be searched for on a molecular, synaptic, cellular, tissue, network and higher-order systems level. Different simplified models, including genetically modified or pharmacologically manipulated rodent models, make this task feasible. The following dissertation examines three simplified models: the role of mitochondrial energy metabolism in inhibitory neurotransmission, metabolic predisposition in psychosis, and the expression pattern of IglON neural cell adhesion molecules. Understanding these models takes us closer to understanding mental disorders and discovering therapeutic opportunities. The findings of these three models can be summarised as follows. PPARGC1α (PGC1α) overexpression mutant displays labile mood phenotype allowing modelling of mood-related disorders. The 129sv mouse strain reflects a predisposed population and simplifies the modelling of psychosis. The expression pattern of IgLONs refers to their potential to reflect irregularities in brain development and maintenance.
Mental disorders are inherently heterogeneous conditions arising from various genetic and environmental insults. The gradual manifestation of mental disorder is often overshadowed by natural development; displays an unpredictable course, unknown side effects, and significant disturbances of cognition. The polygenetic nature of mental disorders makes them challenging to distinguish, diagnose and treat on time. Early detection and appropriate treatment of mental disorders are necessary to prevent the progression of symptoms and associated costs. Scientific research prioritises finding early biological markers that reflect the course of these disorders. These markers should be searched for on a molecular, synaptic, cellular, tissue, network and higher-order systems level. Different simplified models, including genetically modified or pharmacologically manipulated rodent models, make this task feasible. The following dissertation examines three simplified models: the role of mitochondrial energy metabolism in inhibitory neurotransmission, metabolic predisposition in psychosis, and the expression pattern of IglON neural cell adhesion molecules. Understanding these models takes us closer to understanding mental disorders and discovering therapeutic opportunities. The findings of these three models can be summarised as follows. PPARGC1α (PGC1α) overexpression mutant displays labile mood phenotype allowing modelling of mood-related disorders. The 129sv mouse strain reflects a predisposed population and simplifies the modelling of psychosis. The expression pattern of IgLONs refers to their potential to reflect irregularities in brain development and maintenance.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone
Märksõnad
mental disorders, animal models, metabolomics, cell adhesion molecules, biomarkers, genes