Text Region-Based Convolutional Neural Network for Precision Agriculture

dc.contributor.advisorRoy, Kallol, juhendaja
dc.contributor.advisorVirro, Indrek, juhendaja
dc.contributor.authorAbbasov, Ashraf
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-10-30T12:43:16Z
dc.date.available2023-10-30T12:43:16Z
dc.date.issued2023
dc.description.abstractApplication of Neural Networks in Precision Agriculture is now more widespread than ever. Neural networks have been extensively used in various tasks in precision agriculture, such as plant detection, disease detection, yield estimation, and soil classification. In this thesis, we build a blueberry plant image dataset for object detection with additional directional text that indicates the where in the image blueberry plant is. We train the Region-based Convolutional Neural Network (RCNN) model twice. First, using its original architecture that utilizes the Selective Search algorithm to create region proposals. Then, we modify the model by replacing Selective Search algorithm with additional text data to generate region proposals. Through performance analysis of both models on the test data, we show that the text method saves significant time on both training and inference while having good enough accuracy to compete with original model.et
dc.identifier.urihttps://hdl.handle.net/10062/93844
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectagricultureet
dc.subjectneural networkset
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleText Region-Based Convolutional Neural Network for Precision Agricultureet
dc.typeThesiset

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Abbasov_ComputerScienceMSc_2023.pdf
Size:
13.22 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: