Tunnuste valik närvivõrguga akuutse mürgisuse prognoosimisel

dc.contributor.advisorSild, Sulev, juhendaja
dc.contributor.advisorMaran, Uko, juhendaja
dc.contributor.authorPihor, Lisette
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2025-10-20T08:35:38Z
dc.date.available2025-10-20T08:35:38Z
dc.date.issued2025
dc.description.abstractAs a part of this bachelor thesis, the application of feature selection methods for evaluating toxicity (pIGC50) of chemicals using artificial neural networks were examined. An overview of the feature selection methods was compiled, and four different methods were analysed while building neural network models. The best results were achieved with a random forest based selection method. The best model had the R2 value of 0.9534 for the training and 0.8128 for the test set. The results were consistent with previous findings and provided a solution for a larger dataset using fewer molecular descriptors than before, therefor creating an opportunity for interpreting the machine learning results.
dc.identifier.urihttps://hdl.handle.net/10062/116874
dc.language.isoet
dc.publisherTartu Ülikoolet
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectkvantitatiivne struktuurianalüüs
dc.subjectnärvivõrk
dc.subjectakuutne mürgisus
dc.subjectTetrahymena pyroformis
dc.subjectmolekulaartunnused
dc.subjectneural network
dc.subjectacute toxicity
dc.subjectmolecular descriptors
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticsen
dc.subject.otherinfotechnologyen
dc.titleTunnuste valik närvivõrguga akuutse mürgisuse prognoosimisel
dc.typeThesis

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
pihor_informaatika_2025.pdf
Suurus:
1.06 MB
Formaat:
Adobe Portable Document Format