Tunnuste valik närvivõrguga akuutse mürgisuse prognoosimisel

Laen...
Pisipilt

Kuupäev

Ajakirja pealkiri

Ajakirja ISSN

Köite pealkiri

Kirjastaja

Tartu Ülikool

Abstrakt

As a part of this bachelor thesis, the application of feature selection methods for evaluating toxicity (pIGC50) of chemicals using artificial neural networks were examined. An overview of the feature selection methods was compiled, and four different methods were analysed while building neural network models. The best results were achieved with a random forest based selection method. The best model had the R2 value of 0.9534 for the training and 0.8128 for the test set. The results were consistent with previous findings and provided a solution for a larger dataset using fewer molecular descriptors than before, therefor creating an opportunity for interpreting the machine learning results.

Kirjeldus

Märksõnad

kvantitatiivne struktuurianalüüs, närvivõrk, akuutne mürgisus, Tetrahymena pyroformis, molekulaartunnused, neural network, acute toxicity, molecular descriptors

Viide