The comparative study of traditional and AI eye-tracking: practical utility of ai recommendations and visual attention predictions in digital banner advertising

dc.contributor.advisorPentus, Kristian, juhendaja
dc.contributor.advisorPloom, Kerli, juhendaja
dc.contributor.authorZaviyalova, Arina
dc.contributor.authorKalinina, Irina
dc.contributor.otherTartu Ülikool. Majandusteaduskondet
dc.contributor.otherTartu Ülikool. Sotsiaalteaduste valdkondet
dc.date.accessioned2025-07-07T10:52:12Z
dc.date.available2025-07-07T10:52:12Z
dc.date.issued2025
dc.description.abstractThe objective of this study is to clarify the practical utility of AI eye-tracking softwares in predicting visual attention and improving the performance of digital banner advertisements. In order to achieve this objective, the AI eye-tracking software was utilised to predict attention and obtain suggestions for improving the digital banner performance. To clarify the impact of these suggestions, an international digital campaign was executed, employing both non-optimised and optimised banners (A/B testing) . In order to clarify the accuracy of attention prediction, an eye-tracking study was conducted, complemented by semi- structured interviews. The findings of the digital campaign analysis demonstrate that AI design quality metrics are generally not strong predictors of click-through rate, though a few strong correlations were revealed for some countries. The findings of the eye-tracking study indicate that AI predictions exhibited modest alignment with human gaze, yet demonstrated limitations in modelling top-down attention.en
dc.identifier.urihttps://hdl.handle.net/10062/112042
dc.language.isoen
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Estoniaen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subject.othermagistritöödet
dc.subject.othervõrguväljaandedet
dc.subject.othermaster's thesesen
dc.subject.otherpilgujälgimineet
dc.subject.othertehisintellektet
dc.subject.otherneuroturunduset
dc.subject.othertähelepanuet
dc.subject.othere-turunduset
dc.subject.otherkampaaniadet
dc.subject.othereye-trackingen
dc.subject.otherAIen
dc.subject.otherneuromarketingen
dc.subject.othervisual attentionen
dc.subject.otherdigital campaignsen
dc.titleThe comparative study of traditional and AI eye-tracking: practical utility of ai recommendations and visual attention predictions in digital banner advertisingen
dc.title.alternativeAI visuaalse tähelepanu prognoosimine rahvusvahelistes digitaalkampaaniates: võrdlev uuring pilgujälgimise andmetegaet
dc.typeThesisen

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
KM_IrinaKalinina_TUFI_ArinaZaviyalova.pdf
Suurus:
26.32 MB
Formaat:
Adobe Portable Document Format