Plasticity of the unit ball of a Banach space
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Tartu Ülikool
Abstract
Selles bakalaureusetöös vaadeldakse väljakutsuvat lahtist küsimust Banachi ruumi ühikkera plastilisusest. Töös antakse ülevaade probleemist ja laiendatakse osaliste positiivsete tulemuste nimekirja, tõestades ühikkera plastilisuse ruumis c. Samuti saadakse üks nõrgem omadus ruumi c0 ühikkera jaoks – tõestatakse, et mittelaiendav bijektsioon on isomeetria, kui selle pöördkujutus on pidev.
In this bachelor’s thesis, we consider a challenging open problem of whether the unit ball of every Banach space is a plastic metric space. We give an overview of the problem and extend the list of partial positive results by proving the plasticity of the unit ball of c. We also obtain a slightly weaker property for the unit ball of c0 – we prove that a non-expansive bijection is an isometry, provided that it has a continuous inverse.
In this bachelor’s thesis, we consider a challenging open problem of whether the unit ball of every Banach space is a plastic metric space. We give an overview of the problem and extend the list of partial positive results by proving the plasticity of the unit ball of c. We also obtain a slightly weaker property for the unit ball of c0 – we prove that a non-expansive bijection is an isometry, provided that it has a continuous inverse.
Description
Keywords
bakalaureusetöö, funktsionaalanalüüs, Banachi ruumid, meetrilised ruumid, mittelineaarsed operaatorid, plastilisus