Study of the initial amplification of the human papillomavirus genome
Failid
Kuupäev
2015
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Inimese papilloomiviirused (HPVd) nakatavad inimorganismis teadaolevalt ainult ühte tüüpi rakke, naha ja limaskestade epiteelkoes paiknevaid kera¬tinotsüüte. Tavaliselt ei tekita HPV nakkus epiteelkoes märgatavaid haigus¬tunnuseid, kuid viiruse osadel variantidel (tüüpidel) on võime kut¬suda esile peremeesrakkude ebatavaliselt kiiret paljunemist, mis võib viia nakatunud koes healoomuliste kasvajate arenguni. Pikaajaline HPV nakkus võib aga põhjustada viiruse tekitatud healoomulise kasvaja muutumise halvaloomu¬liseks. Püsivat HPV nakkust peetakse emakakaelavähi tekke kõige olulisemaks riskifaktoriks, kuid HPVd on seotud ka teiste genitaal- ja anaalpiirkonna ning pea- ja kaelapiirkonna kasvajate arenguga. Mõnede HPV tüüpidega nakatumist saab efektiivselt ennetada vaktsiinidega, kuid kõrge hinna tõttu on vaktsineerimine vähestele kättesaadav. HPV tekitatud kasvajaid on võimalik eemaldada erinevate meditsiiniliste protseduuridega, kuid kasutusel ei ole mitte ühtegi ravimit, mis suudaks takistada viiruse paljunemist nakatunud koes.
Laboritingimustes on HPV peremeesrakkude kasvatamine ning nende elu¬tsükli matkimine keeruline ning kulukas. Lisaks ei või¬malda traditsiooniline metoodika uurida HPV genoomi replikatsiooni varajasi etappe. Seetõttu on identifitseerimata HPV genoomi paljundamise täpne mehhanism ning protsessis osalevad rakulised faktorid, kuigi need tead¬mised on olulised HPV-vastaste ravimite väljatöötamiseks.
Käeolevas doktoritöös kajastatud uurimisprojekti eesmärk oli luua mudel¬süsteem, mida saaks rakendada HPV päriliku materjali paljundamise uuri¬miseks, ning rakendada loodud mudelsüsteemi viiruse replikatsiooni vara¬jaste etappide uurimiseks. Avastasime, et HPV genoomi paljundamisesse on kaasatud tavaliselt rakulise DNA kahjustuste parandamise protsessis olulist rolli mängiv homoloogne rekombinatsioon. Homoloogse rekombinatsiooni tulemusena tekivad multimeersed viiruse DNA molekulid, mis sisaldavad mitut viiruse genoomi koopiat. Selliste eripäraste HPV genoomide teket on varasemalt täheldatud ka püsivat HPV nakkust kandvatelt patsientidelt eraldatud koeproovides ning võib oletada, et multimeersed viiruse genoomid on olulised viiruse pikaajalisel püsimisel nakatunud koes.
Lisaks analüüsisime HPV molekule, mis tekivad viiruse päriliku materjali pal¬jundamise varajaste etappide käigus HPV replikatsiooni vahesaadustena. Meie tule¬mused näita¬sid, et viirus kasutab oma päriliku materjali paljundamiseks kahte eraldiseisvat mehhanismi. Kahe eraldiseisva mehhanismi rakendamine oma päri¬liku materjali paljundamiseks on HPVle kasulik, kuna võimaldab efektiivselt paljundada viiruse genoomi erinevates rakulistes tingimustes, samas raskendab kahe mehhanismi kasutamine viiruse DNA paljundamiseks oluliselt HPV genoomi replikatsiooni takistavate ravimite väljatöötamist, kuna tõhus ravim peab toimima kahe erineva mehhanismi vastu.
Human papillomaviruses (HPVs) infect the keratinocytes of cutaneous and mucosal epithelial tissue. Human papillomavirus infections are most commonly asymptomatic but may lead to the formation of benign lesions in the infected tissue. Persistent HPV infection may lead to the malignant progression of the virus-induced lesions. HPV infection is implicated in the development of cervical and other anogenital can¬cers as well as head and neck cancers. The intro¬duction of preventive HPV vaccines has led to a decrease in the prevalence of HPV infections and cervical lesions; however, the vaccines currently on the market are only targeted against nine of the most common HPV types. Additionally, because of the high cost of the vac-cines, they are largely unattainable in developing countries. Currently, there are no therapeutic procedures or drugs available to treat HPV infections by specifically targeting HPV replication. Cultivating keratinocytes and mimicking the HPV life cycle under laboratory conditions is complicated and expensive. Additionally, the traditional methods used to study HPV infection in tissue do not enable research into the very early events that occur during HPV replication. Therefore, the exact mechanism underlying HPV genomic replication and the cellular proteins involved in the process have not been identified, which in turn is hampering the development of anti-HPV drugs. The general objectives of the research detailed in the present thesis involve developing a cellular assay capable of supporting HPV replication and utilizing the developed cellular assay to investigate the initial amplification replication of the HPV genome. We discover that homologous recombination, which is essential for the repair of cellular DNA lesions, is involved in HPV replication. The engagement of homologous recombination during viral replication results in the generation of multimeric HPV genomes, which are likely important during the long-term maintenance of HPV genomes during persistent infection. We analyze the intermediates that are generated during HPV infection in host cells, and discover that two separate mechanisms are likely used during the replication of the HPV genome. Utilizing two different replication mechanisms would enable papilloma¬viruses to maintain HPV genomic replication under changing host cell envi¬ronments, and contribute to highly efficient viral replication. Demonstrating the presence of two different replication mechanisms during papillomavirus replication could have significant implications for the treatment of HPV-associated lesions. Specific inhibitors of HPV replication are not cur¬rently used for the treatment of HPV-associated afflictions; however, the involvement of two different mechanisms in the replication of the HPV genome indicates that any potential drug should be able to target both of these mecha¬nisms to eradicate HPV infection.
Human papillomaviruses (HPVs) infect the keratinocytes of cutaneous and mucosal epithelial tissue. Human papillomavirus infections are most commonly asymptomatic but may lead to the formation of benign lesions in the infected tissue. Persistent HPV infection may lead to the malignant progression of the virus-induced lesions. HPV infection is implicated in the development of cervical and other anogenital can¬cers as well as head and neck cancers. The intro¬duction of preventive HPV vaccines has led to a decrease in the prevalence of HPV infections and cervical lesions; however, the vaccines currently on the market are only targeted against nine of the most common HPV types. Additionally, because of the high cost of the vac-cines, they are largely unattainable in developing countries. Currently, there are no therapeutic procedures or drugs available to treat HPV infections by specifically targeting HPV replication. Cultivating keratinocytes and mimicking the HPV life cycle under laboratory conditions is complicated and expensive. Additionally, the traditional methods used to study HPV infection in tissue do not enable research into the very early events that occur during HPV replication. Therefore, the exact mechanism underlying HPV genomic replication and the cellular proteins involved in the process have not been identified, which in turn is hampering the development of anti-HPV drugs. The general objectives of the research detailed in the present thesis involve developing a cellular assay capable of supporting HPV replication and utilizing the developed cellular assay to investigate the initial amplification replication of the HPV genome. We discover that homologous recombination, which is essential for the repair of cellular DNA lesions, is involved in HPV replication. The engagement of homologous recombination during viral replication results in the generation of multimeric HPV genomes, which are likely important during the long-term maintenance of HPV genomes during persistent infection. We analyze the intermediates that are generated during HPV infection in host cells, and discover that two separate mechanisms are likely used during the replication of the HPV genome. Utilizing two different replication mechanisms would enable papilloma¬viruses to maintain HPV genomic replication under changing host cell envi¬ronments, and contribute to highly efficient viral replication. Demonstrating the presence of two different replication mechanisms during papillomavirus replication could have significant implications for the treatment of HPV-associated lesions. Specific inhibitors of HPV replication are not cur¬rently used for the treatment of HPV-associated afflictions; however, the involvement of two different mechanisms in the replication of the HPV genome indicates that any potential drug should be able to target both of these mecha¬nisms to eradicate HPV infection.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone.
Märksõnad
inimese papilloomiviirus, genoomid, replikatsioon, geeniamplifikatsioon, human papillomavirus, genomes, replication, gene amplification