Comparative Analysis of Deterministic and Graph Neural Network Based RDFS Materialization Methods

dc.contributor.advisorCarneiro Alves de Lima, Bruno Rucy, juhendaja
dc.contributor.authorTraagel, Mart
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2024-10-07T11:18:50Z
dc.date.available2024-10-07T11:18:50Z
dc.date.issued2023
dc.description.abstractThis thesis compares deterministic Datalog-based and modern deep learning-based methodologies for Resource Description Framework Schema (RDFS) materialization. The research process was meticulously divided into distinct stages. The central focus was to examine the performance of the two methods regarding efficiency and effectiveness. The results indicated that while deep learning approaches, particularly Graph Neural Networks, demonstrated the capability to handle complex graph-structured data, they were considerably slower than their Datalog counterparts. These findings illuminate both methodologies' strengths and limitations, providing crucial insights for future exploration in this domain.
dc.identifier.urihttps://hdl.handle.net/10062/105227
dc.language.isoen
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Estoniaen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subjectRDF
dc.subjectRDFS
dc.subjectGraafnärvivõrgud
dc.subjectNärvivõrk
dc.subjectMasinõpe
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticsen
dc.subject.otherinfotechnologyen
dc.titleComparative Analysis of Deterministic and Graph Neural Network Based RDFS Materialization Methods
dc.typeThesisen

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Traagel_datascience_2023.pdf
Suurus:
3.16 MB
Formaat:
Adobe Portable Document Format