Real-Time Event Detection System for Mobile Data

dc.contributor.advisorHadachi, Amnir, juhendaja
dc.contributor.advisorSaluveer, Erki, juhendaja
dc.contributor.authorMohebbian, Mohammad Mahdi
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-11-09T10:23:26Z
dc.date.available2023-11-09T10:23:26Z
dc.date.issued2020
dc.description.abstractMobile data is one of the prior data sources which can be used for urban study analytics due to the amount of valuable information they contain, such as type of mobile data, time and most importantly data’s coordinates. In order to keep the cell services stable for users all across the country it is crucial for authorities to be aware of unannounced gatherings which can cause traffic overload on cell towers in the area. In this thesis implementation of a enterprise system has been demonstrated for monitoring the behavior of the cell towers under the administration’s authority. The core functionality of this system is detecting ongoing events in different areas on an hourly-basis schedule utilizing multiple statistical approaches for abnormality detection. The output of the event detection section of the system is an approximate estimation of the ongoing event’s location on the map. Current design of the system is aiming to fullfill the downsides of similar approaches for event and crowd detection such as high processing expenses and noncomprehensive resources by using parallel servers, distributing the processing load while keeping the pipline clear for user’s demands, and utilizing Call Detail Records (CDR) data as input resources which gives the advatages of containing the majority of mobile transactions and human behavior in the city.et
dc.identifier.urihttps://hdl.handle.net/10062/94135
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMobile Dataet
dc.subjectEvent Detectionet
dc.subjectCrowd Detectionet
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleReal-Time Event Detection System for Mobile Dataet
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Mohebbian_ComputerScience_2020.pdf
Suurus:
4.02 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: