Twitter sentiment analysis to estimate happiness level

dc.contributor.advisorSharma, Rajesh, juhendaja
dc.contributor.authorRol, Nikolai
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-11-08T13:32:47Z
dc.date.available2023-11-08T13:32:47Z
dc.date.issued2020
dc.description.abstractHappiness is something that people strive for. However, it has always been hard to measure and understand what happiness depends on. This paper investigates if sentiment analysis can be used to estimate how happy people are and if sentiment correlates with socioeconomic factors or with the news. For analysis, text processing techniques were applied to Twitter posts gathered over the period from November 2019 to May 2020. The study shows a weak correlation with socio-economic factors, whereas the strongest relationship was with Health Care Quality. After a closer look into the change in daily sentiment, it was found that certain topics were discussed more than others on the dates with peaks. To investigate this aspect, the correlation analysis between sentiments of Twitter posts and news was made, however, the coefficient appeared to be low. The conclusion is that the result of sentiment analysis over Twitter data does not show a high correlation with socioeconomic factors, but it might have a certain dependency on events, news, or global shocks.et
dc.identifier.urihttps://hdl.handle.net/10062/94119
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectsentiment analysiset
dc.subjecthappinesset
dc.subjectcorrelation analysiset
dc.subjectsocio-economic factorset
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleTwitter sentiment analysis to estimate happiness levelet
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Rol_Innovation_and_technology_management_Master_Thesis_2020.pdf
Suurus:
1.65 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: