Semiquantitative Classification of Two Oxidizing Gases with Graphene-Based Gas Sensors

dc.contributor.authorLind, Martin
dc.contributor.authorKiisk, Valter
dc.contributor.authorKodu, Margus
dc.contributor.authorKahro, Tauno
dc.contributor.authorRenge, Indrek
dc.contributor.authorAvarmaa, Tea
dc.contributor.authorMakaram, Prashanth
dc.contributor.authorZurutuza, Amaia
dc.contributor.authorJaaniso, Raivo
dc.date.accessioned2022-03-21T13:44:17Z
dc.date.available2022-03-21T13:44:17Z
dc.date.issued2022
dc.description.abstractMiniature and low-power gas sensing elements are urgently needed for a portable electronic nose, especially for outdoor pollution monitoring. Hereby we prepared chemiresistive sensors based on wide-area graphene (grown by chemical vapor deposition) placed on Si/Si3N4 substrates with interdigitated electrodes and built-in microheaters. Graphene of each sensor was individually functionalized with ultrathin oxide coating (CuO-MnO2, In2O3 or Sc2O3) by pulsed laser deposition. Over the course of 72 h, the heated sensors were exposed to randomly generated concentration cycles of 30 ppb NO2, 30 ppb O3, 60 ppb NO2, 60 ppb O3 and 30 ppb NO2 + 30 ppb O3 in synthetic air (21% O2, 50% relative humidity). While O3 completely dominated the response of sensors with CuO-MnO2 coating, the other sensors had comparable sensitivity to NO2 as well. Various response features (amplitude, response rate, and recovery rate) were considered as machine learning inputs. Using just the response amplitudes of two complementary sensors allowed us to distinguish these five gas environments with an accuracy of ~ 85%. Misclassification was mostly due to an overlap in the case of the 30 ppb O3, and 30 ppb O3 + 30 ppb NO2 responses, and was largely caused by the temporal drift of these responses. The addition of recovery rates to machine learning input variables enabled us to very clearly distinguish different gases and increase the overall accuracy to ~94%.en
dc.identifier.urihttps://doi.org/10.3390/chemosensors10020068
dc.identifier.urihttp://hdl.handle.net/10062/77420
dc.language.isoenget
dc.publisherMDPIet
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/881603///GrapheneCore3et
dc.relation.ispartofseriesChemosensors 2022, 10(2);68
dc.rightsinfo:eu-repo/semantics/openAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subjectgas sensoren
dc.subjectgrapheneen
dc.subjectmachine learningen
dc.subjectNO2*
dc.subjectO3*
dc.titleSemiquantitative Classification of Two Oxidizing Gases with Graphene-Based Gas Sensorsen
dc.typeinfo:eu-repo/semantics/articleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
chemosensors_10_00068.pdf
Size:
3.97 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.67 KB
Format:
Item-specific license agreed upon to submission
Description: