Quality estimation through attention

dc.contributor.advisorFishel, Mark, juhendaja
dc.contributor.authorYankovskaya, Elizaveta
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.date.accessioned2022-05-11T08:22:11Z
dc.date.available2022-05-11T08:22:11Z
dc.date.issued2022-05-11
dc.descriptionVäitekirja elektrooniline versioon ei sisalda publikatsiooneet
dc.description.abstractMasintõlge on saanud osaks mitte ainult keeleteadlaste ja professionaalsete tõlkijate, vaid peaaegu kõigi elust. Enamik inimesi, kes on kasutanud masintõlget, on kohanud naljakaid ja kohati täiesti valesid tõlkeid, mis lause tähendust täielikult moonutavad. Seega peame peale masintõlke mudeli kasutama hindamismehhanismi, mis teavitab inimesi tõlgete kvaliteedist. Loomulikult saavad professionaalsed tõlkijad masintõlke väljundit hinnata ja vajadusel toimetada. Inimeste märkuste kasutamine veebipõhiste masintõlkesüsteemide tõlgete hindamiseks on aga äärmiselt kulukas ja ebapraktiline. Seetõttu on automatiseeritud tõlkekvaliteedi hindamise süsteemid masintõlke töövoo oluline osa. Kvaliteedihinnangu eesmärk on ennustada masintõlke väljundi kvaliteeti, ilma etalontõlgeteta. Selles töös keskendusime kvaliteedihinnangu mõõdikutele ja käsitleme tõlkekvaliteedi näitajana tähelepanumehhanismi ennustatud jaotusi, mis on üks kaasaegsete neuromasintõlke (NMT) süsteemide sisemistest parameetritest. Kõigepealt rakendasime seda rekurrentsetel närvivõrkudel (RNN) põhinevatele masintõlkemudelitele ja analüüsisime pakutud meetodite toimivust juhendamata ja juhendatud ülesannete jaoks. Kuna RNN-põhised MT-süsteemid on nüüdseks asendunud transformeritega, mis muutusid peamiseks tipptaseme masintõlke tehnoloogiaks, kohandasime oma lähenemisviisi ka transformeri arhitektuurile. Näitasime, et tähelepanupõhised meetodid sobivad nii juhendatud kui ka juhendamata ülesannete jaoks, kuigi teatud piirangutega. Kuna annotatsiooni andmete hankimine on üsna kulukas, uurisime, kui palju annoteeritud andmeid on vaja kvaliteedihinnangu mudeli treenimiseks.et
dc.description.abstractMachine translation has become a part of the life of not only linguists and professional translators, but almost everyone. Most people who have used machine translation have come across funny and sometimes completely incorrect translations that turn the meaning of a sentence upside down. Thus, apart from a machine translation model, we need to use a scoring mechanism that informs people about the quality of translations. Of course, professional translators can assess and, if necessary, edit the machine translation output. However, using human annotations to evaluate translations of online machine translation systems is extremely expensive and impractical. That is why automated systems for measuring translation quality are a crucial part of the machine translation pipeline. Quality Estimation aims to predict the quality of machine translation output at run-time without using any gold-standard human annotations. In this work, we focused on Quality Estimation methods and explored the distribution of attention—one of the internal parameters of modern neural machine translation systems—as an indicator of translation quality. We first applied it to machine translation models based on recurrent neural networks (RNNs) and analyzed the performance of proposed methods for unsupervised and supervised tasks. Since transformer-based machine translation models had supplanted RNN-based, we adapted our approach to the attention extracted from transformers. We demonstrated that attention-based methods are suitable for both supervised and unsupervised tasks, albeit with some limitations. Since getting annotation labels is quite expensive, we looked at how much annotated data is needed to train a quality estimation model.en
dc.description.urihttps://www.ester.ee/record=b5499352et
dc.identifier.isbn978-9949-03-893-0
dc.identifier.isbn978-9949-03-894-7 (pdf)
dc.identifier.issn2613-5906
dc.identifier.urihttp://hdl.handle.net/10062/82031
dc.language.isoenget
dc.relation.ispartofseriesDissertationes informaticae Universitatis Tartuensis;35
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectcomputational linguisticsen
dc.subjectartificial neural networksen
dc.subjectmachine translationen
dc.subjectqualitative criteriaen
dc.subjectassessmenten
dc.subject.otherdissertatsioonidet
dc.subject.otherETDet
dc.subject.otherdissertationset
dc.subject.otherväitekirjadet
dc.subject.otherarvutilingvistikaet
dc.subject.othertehisnärvivõrgudet
dc.subject.otherraaltõlgeet
dc.subject.otherkvaliteetet
dc.subject.otherhindamineet
dc.titleQuality estimation through attentionet
dc.title.alternativeKvaliteedi hindamine tähelepanu abilet
dc.typeThesiset

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
yankovskaya_elizaveta.pdf
Size:
1.75 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1 B
Format:
Item-specific license agreed upon to submission
Description: