Topic Modeling for Requirements Engineering: An Analysis of Ridesharing App Reviews

dc.contributor.advisorIqbal, Tahira, juhendaja
dc.contributor.advisorTaveter, Kuldar, juhendaja
dc.contributor.authorEnlik
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-09-01T08:25:08Z
dc.date.available2023-09-01T08:25:08Z
dc.date.issued2022
dc.description.abstractResearch in AI technology has become more popular today, helped by the rising of data volumes, powerful algorithms, and easier access to high-performance computing. Natural Language Processing (NLP) as a subset of AI technology plays an important role in the future of conversational AI because of its capability to interpret our natural language. On the other hand, ridesharing app industry is growing exponentially, helped by the rise of mobile device technology and the need for faster and cheaper mobility options. In the current thesis, we provide an overview of the current industrial practices in the development of NLP applications for analyzing app reviews and identify the gap in the state-of-the-art practices. To bridge the gap, this thesis proposes a method to extract information from the app reviews, with the goal to help ridesharing app developers to identify which features are most needed and which are less important. The proposed method is compared with the other similar methods and is validated with Europe’s top 10 ridesharing apps, including Bolt, Uber, Blablacar, Cabify, Via, Getaround, OlaCabs, Taxi.eu, Freenow, and Yandex Go. This contribution helps the ridesharing app developers to determine the requirements for developing their apps.et
dc.identifier.urihttps://hdl.handle.net/10062/91943
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectNatural Language Processinget
dc.subjectData-Driven Requirementset
dc.subjectRidesharinget
dc.subjectApp Reviewset
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleTopic Modeling for Requirements Engineering: An Analysis of Ridesharing App Reviewset
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
enlik_softwareeng_2022.pdf
Suurus:
837.71 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: