Comparative analysis of traditional time series, machine learning, deep learning and hybrid models for profit forecasting in financial markets

dc.contributor.advisorRaus, Toomas, juhendaja
dc.contributor.authorVaask, William
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Matemaatika ja statistika instituutet
dc.date.accessioned2025-06-25T12:34:00Z
dc.date.available2025-06-25T12:34:00Z
dc.date.issued2025
dc.description.abstractThis thesis compared the forecasting performance of traditional time series, machine learning, deep learning and hybrid models on daily banking profit data in financial markets area aggregated on three different levels. To evaluate different methods, this thesis used a novel performance metric - corrected mean average scaled error (cMASE), which improves interpretability of MASE by using T one-step naive forecasts instead of T −1, which results in naive method always having a score of cMASE = 1. Despite advancements in computational power, traditional time series method SARIMA still outperformed other models, also showing the most consistent results between average cross-validation cMASE and testing cMASE. For best hybrid models, gradient boosting methods complemented SARIMA by correcting forecasts using long lags, rolling means and standard deviations. While SARIMA models required refitting after every forecast, the machine learning, deep learning and non-linear parts of hybrid models performed best when refit only on average once every two weeks, which reduced the overall computing cost significantly.
dc.identifier.urihttps://hdl.handle.net/10062/111674
dc.language.isoen
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Estoniaen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subjecthübriidet
dc.subjectMASE
dc.subjectSARIMA
dc.subjectXGBoost
dc.subjectLightGBM
dc.subjectLSTM
dc.subjecthybriden
dc.subject.othermagistritöödet
dc.subject.othervõrguväljaandedet
dc.titleComparative analysis of traditional time series, machine learning, deep learning and hybrid models for profit forecasting in financial marketsen
dc.typeThesis

Failid

Originaal pakett

Nüüd näidatakse 1 - 2 2
Laen...
Pisipilt
Nimi:
autori_parandustega_william_vaask_msc_2025.pdf
Suurus:
1.54 MB
Formaat:
Adobe Portable Document Format
Laen...
Pisipilt
Nimi:
william_vaask_msc_2025.pdf
Suurus:
1.54 MB
Formaat:
Adobe Portable Document Format