Financial Fraud Detection: A Declarative Approach

dc.contributor.advisorAwad, Ahmed, juhendaja
dc.contributor.authorHewashy, Mohga Soliman Emam
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-06-12T12:45:39Z
dc.date.available2023-06-12T12:45:39Z
dc.date.issued2023
dc.description.abstractThe aim of the thesis is to introduce a declarative approach for the statically specified financial fraud detection use cases and scenarios defined by the financial regulatory entities to capture money laundering and terrorist financing activities ML/TF. The thesis introduces the Match_Recognize Python library that replaces the static rules ingested into the financial institutions and organizations transaction monitoring system to detect financial fraudulence and suspicious activities. The introduced Match_Recognize Python library mimics the functionality of the SQL Match_Recognize clause which performs pattern recognition using regular expressions which can be used to detect financial fraud patterns and therefore eliminate the need to design and develop dedicated static use case scenarios. Using the Match_Recognize library, financial institutions and organizations can produce the financial fraud detection use case scenarios required by the financial regulatory entities using simple regular expressions that are passed to the library alongside the dataset. Additionally, the Match_Recognize Python library contains a Match_Recognize Automaton function that validates new, proposed patterns in the form of regular expressions within the Match_Recognize clause pattern regular expression by using the non-deterministic Automaton created dynamically from the Match_Recognize pattern regular expression. The thesis also introduces versatile, pliant financial fraud detection scenarios inspired by the Financial Action Task Force Recommendations. Evaluation of the Match_Recognize Python library is conducted by running the financial fraud detection scenarios on both the Match_Recognize clause in Oracle database and Match_Recognize Python Library then comparing the results. A dedicated time log has been created in order to compare the averaged time taken to simulate each financial fraud detection scenario statically and to simulate it using the Match_Recognize Python library. The results show that indeed the Match_Recognize library reduces the financial fraud scenario simulations time by 96.3%.et
dc.identifier.urihttps://hdl.handle.net/10062/90493
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPattern Matchinget
dc.subjectMatch Recognizeet
dc.subjectPythonet
dc.subjectFinancial Fraud Detectionet
dc.subjectAnti-Money Laundryet
dc.subjectCounter Terrorism Financinget
dc.subjectNondeterministic Automatonet
dc.subjectSuspicious Activity Monitoringet
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleFinancial Fraud Detection: A Declarative Approachet
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Hewashy_thesis_CS_2023.pdf
Suurus:
674.33 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: