Measures to assess the discriminatory power of loss given default models

dc.contributor.advisorKäärik, Meelis, juhendaja
dc.contributor.authorVisk, Kristo
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Matemaatika ja statistika instituutet
dc.date.accessioned2022-09-05T14:29:23Z
dc.date.available2022-09-05T14:29:23Z
dc.date.issued2022
dc.description.abstractThe purpose of this master’s thesis is to explore measures that can be used to assess the discriminatory power of loss given default models, which are used for the quantification of unexpected losses by financial institutions. In the first chapter, a general overview of the Basel Accords, the requirements related to regulatory capital calculations, the estimation of unexpected losses and the validation of internal risk estimates are provided. The second chapter highlights various measures that can be used to assess the discriminatory power of loss given default models, including a measure defined in the European Central Bank’s instructions for reporting the validation results of internal models, which is referred to as the generalized AUC. The mathematical properties of the measures are analyzed and comparisons between the measures are provided. Two complementary measures are introduced in the thesis, which can be used to support validation conclusions. In the third chapter, a simulation is presented that illustrates a situation where most of the observations in the validation sample carry relatively low losses and a comparison across the measures defined in the second chapter is provided.en
dc.identifier.urihttp://hdl.handle.net/10062/83939
dc.language.isoenget
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBaseli Akordidet
dc.subjectsisereitingutel põhinevad mudelidet
dc.subjectmaksejõuetusest tingitud kahju prognoosivad mudelidet
dc.subjectjärjestusvõimeet
dc.subjectastakkorrelatsioonet
dc.subjectüldistatud AUCet
dc.subjectgeneralized AUCen
dc.subjectrank correlationen
dc.subjectdiscriminatory poweren
dc.subjectloss given default modelsen
dc.subjectinternal ratings-based modelsen
dc.subjectBasel Accordsen
dc.subject.otherkrediidirisket
dc.subject.othercredit risken
dc.titleMeasures to assess the discriminatory power of loss given default modelsen
dc.typeinfo:eu-repo/semantics/masterThesiset

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
visk_kristo_msc_2022.pdf
Size:
656.16 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.67 KB
Format:
Item-specific license agreed upon to submission
Description: