Quantum Relational Hoare Logic Judgements

dc.contributor.advisorDr Unruh, Dominique Peer Ghislain, juhendaja
dc.contributor.authorPass, Galina
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-09-22T07:24:26Z
dc.date.available2023-09-22T07:24:26Z
dc.date.issued2021
dc.description.abstractWith the development of quantum and post-quantum cryptography, it becomes necessary to verify security proofs of protocols. For this, quantum Relational Hoare Logic was developed. The main object of this logic is judgments that demonstrate the various connections between two quantum programs. Their are for possible ways to define judgements: with quantum predicates or operators, with separability requirement or without it. The subject of study in this thesis is the question of whether it is possible for such a judgment to answer the question whether it holds or not. The chosen approach is to use the linear and convex conical structure of the studied objects to apply semidefinite and cone programming. This allowed to apply results related to the optimization of linear functions over a set of separable operators. This provide an efficient algorithm for the two definitions without the separability constraint. For the other two types of judgements this approach gives a reformulation of the problem in terms of cone programming and polynomials non-negativity. This allows to algorithmically check connections between quantum programs and continue the studies with a new point of view on the judgements solvability.et
dc.identifier.urihttps://hdl.handle.net/10062/92353
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectQuantum cryptographyet
dc.subjectquantum informationet
dc.subjectsemidefinite programminget
dc.subjectcone programminget
dc.subjectconvex optimization relational Hoare logicet
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleQuantum Relational Hoare Logic Judgementset
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Pass_computerscience_2021.pdf
Suurus:
324.27 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: