Continuous learning for multilingual neural machine translation

dc.contributor.advisorTättar, Andre, juhendaja
dc.contributor.advisorFišel, Mark, juhendaja
dc.contributor.authorKolesnykov, Dmytro
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-09-08T07:33:27Z
dc.date.available2023-09-08T07:33:27Z
dc.date.issued2020
dc.description.abstractWith the growing amount of text data, there is also a growing demand for automatic translation systems. The majority of big companies are trying to develop their own translation engines to compete in this field. Especially, there is a need for universal multilingual models that ideally are capable of translating between any languages. This work aims to establish a decent multilingual translation system that continues learning from the monolingual inputs of in-domain data. Thus, to improve the multilingual NMT translation system’s performance and transfer knowledge to unseen language pairs without any additional models or parallel data sources. We describe our adaptation of back-translation, a practical approach for data-augmentation, to continuous learning. The results are reported for English, Russian and Estonian languages using only publicly available data.et
dc.identifier.urihttps://hdl.handle.net/10062/92015
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectnatural language processinget
dc.subjectneural machine translationet
dc.subjecttransfer-learninget
dc.subjectback-translationet
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleContinuous learning for multilingual neural machine translationet
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Continuous_Learning_for_NMT.pdf
Suurus:
567.67 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: